Weekend Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmas50

Amazon Web Services ANS-C01 - Amazon AWS Certified Advanced Networking - Specialty

Page: 2 / 8
Total 288 questions

A company plans to run a computationally intensive data processing application on AWS. The data is highly sensitive. The VPC must have no direct internet access, and the company has applied strict network security to control access.

Data scientists will transfer data from the company's on-premises data center to the instances by using an AWS Site-to-Site VPN connection. The on-premises data center uses the network range 172.31.0.0/20 and will use the network range 172.31.16.0/20 in the application VPC.

The data scientists report that they can start new instances of the application but that they cannot transfer any data from the on-premises data center. A network engineer enables VPC flow logs and sends a ping to one of the instances to test reachability. The flow logs show the following:

The network engineer must recommend a solution that will give the data scientists the ability to transfer data from the on-premises data center.

Which solution will meet these requirements?

A.

Modify the security group for the application. Add an inbound rule to allow traffic from the on-premises data center network range to the application.

B.

Modify the network ACLs for the VPC subnet. Add an inbound rule to allow traffic from the on-premises data center network range to the VPC subnet range.

C.

Modify the network ACLs for the VPC subnet. Add an outbound rule to allow traffic from the VPC subnet range to the on-premises data center network range.

D.

Modify the security group for the application. Add an outbound rule to allow traffic from the application to the on-premises data center network range.

A company has multiple firewalls and ISPs for its on-premises data center. The company has a single AWS Site-to-Site VPN connection from the company's on-premises data center to a transit gateway. A single ISP services the Site-to-Site VPN connection. Multiple VPCs are attached to the transit gateway.

A customer gateway that the Site-to-Site VPN connection uses fails. Connectivity is completely lost, but the company's network team does not receive a notification.

The network team needs to implement redundancy within a week in case a single customer gateway fails again. The team wants to use an Amazon CloudWatch alarm to send notifications to an Amazon Simple Notification Service (Amazon SNS) topic if any tunnel of the Site-to-Site VPN connection fails.

Which solution will meet these requirements MOST cost-effectively?

A.

Replace the existing customer gateway with a new router. Create a new Site-to-Site VPN connection to the transit gateway. For each VPN connection, set up a CloudWatchTunnelState alarm for the VPN connection. Use a value of 0 for the alarm.

B.

Use a second customer gateway and a second ISP. Create a new Site-to-Site VPN connection to the transit gateway. For each VPN connection, set up a CloudWatch TunnelState alarm for the VPN connection. Use a value of less than 1 for the alarm.

C.

Add an AWS Direct Connect connection to the existing Site-to-Site VPN connection to the transit gateway. For each VPN connection, set up a CloudWatch TunnelState alarm for the VPN connection. Use a value of failed for the alarm.

D.

Use a second customer gateway with the existing ISP. Create a new Site-to-Site VPN connection to the transit gateway. For each VPN connection, set up a CloudWatch TunnelState alarm for the VPN connection. Use a value of unavailable for the alarm.

A media company is implementing a news website for a global audience. The website uses Amazon CloudFront as its content delivery network. The backend runs on Amazon EC2 Windows instances behind an Application Load Balancer (ALB). The instances are part of an Auto Scaling group. The company's customers access the website by using service example com as the CloudFront custom domain name. The CloudFront origin points to an ALB that uses service-alb.example.com as the domain name.

The company’s security policy requires the traffic to be encrypted in transit at all times between the users and the backend.

Which combination of changes must the company make to meet this security requirement? (Choose three.)

A.

Create a self-signed certificate for service.example.com. Import the certificate into AWS Certificate Manager (ACM). Configure CloudFront to use this imported SSL/TLS certificate. Change the default behavior to redirect HTTP to HTTPS.

B.

Create a certificate for service.example.com by using AWS Certificate Manager (ACM). Configure CloudFront to use this custom SSL/TLS certificate. Change the default behavior to redirect HTTP to HTTPS.

C.

Create a certificate with any domain name by using AWS Certificate Manager (ACM) for the EC2 instances. Configure the backend to use this certificate for its HTTPS listener. Specify the instance target type during the creation of a new target group that uses the HTTPS protocol for its targets. Attach the existing Auto Scaling group to this new target group.

D.

Create a public certificate from a third-party certificate provider with any domain name for the EC2 instances. Configure the backend to use this certificate for its HTTPS listener. Specify the instance target type during the creation of a new target group that uses the HTTPS protocol for its targets. Attach the existing Auto Scaling group to this new target group.

E.

Create a certificate for service-alb.example.com by using AWS Certificate Manager (ACM). Onthe ALB add a new HTTPS listener that uses the new target group and the service-alb.example.com ACM certificate. Modify the CloudFront origin to use the HTTPS protocol only. Delete the HTTP listener on the ALB.

F.

Create a self-signed certificate for service-alb.example.com. Import the certificate into AWS Certificate Manager (ACM). On the ALB add a new HTTPS listener that uses the new target group and the imported service-alb.example.com ACM certificate. Modify the CloudFront origin to use the HTTPS protocol only. Delete the HTTP listener on the ALB.

A company is migrating its containerized application to AWS. For the architecture the company will have an ingress VPC with a Network Load Balancer (NLB) to distribute the traffic to front-end pods in an Amazon Elastic Kubernetes Service (Amazon EKS) cluster. The front end of the application will determine which user is requesting access and will send traffic to 1 of 10 services VPCs. Each services VPC will include an NLB that distributes traffic to the services pods in an EKS cluster.

The company is concerned about overall cost. User traffic will be responsible for more than 10 TB of data transfer from the ingress VPC to services VPCs every month. A network engineer needs to recommend how to design the communication between the VPCs.

Which solution will meet these requirements at the LOWEST cost?

A.

Create a transit gateway. Peer each VPC to the transit gateway. Use zonal DNS names for the NLB in the services VPCs to minimize cross-AZ traffic from the ingress VPC to the services VPCs.

B.

Create an AWS PrivateLink endpoint in every Availability Zone in the ingress VPC. Each PrivateLink endpoint will point to the zonal DNS entry of the NLB in the services VPCs.

C.

Create a VPC peering connection between the ingress VPC and each of the 10 services VPCs. Use zonal DNS names for the NLB in the services VPCs to minimize cross-AZ traffic from the ingress VPC to the services VPCs.

D.

Create a transit gateway. Peer each VPC to the transit gateway. Turn off cross-AZ load balancing on the transit gateway. Use Regional DNS names for the NLB in the services VPCs.

A company recently implemented a security policy that prohibits developers from launching VPC network infrastructure. The policy states that any time a NAT gateway is launched in a VPC, the company's network security team must immediately receive an alert to terminate the NAT gateway. The network security team needs to implement a solution that can be deployed across AWS accounts with the least possible administrative overhead. The solution also must provide the network security team with a simple way to view compliance history.

Which solution will meet these requirements?

A.

Develop a script that programmatically checks for NAT gateways in an AWS account, sends an email alert, and terminates the NAT gateway if a NAT gateway is detected. Deploy the script on an Amazon EC2 instance in each account. Use a cron job to run the script every 5 minutes. Log the results of the checks to an Amazon RDS for MySQL database.

B.

Create an AWS Lambda function that programmatically checks for NAT gateways in an AWS account, sends an email alert, and terminates the NAT gateway if a NAT gateway is detected. Deploy the Lambda function to each account by using AWS Serverless Application Model (AWS SAM) templates. Store the results of the checks on an Amazon OpenSearch Service cluster in each account.

C.

Enable Amazon GuardDuty. Create an Amazon EventBridge rule for the Behavior:EC2/NATGatewayCreation GuardDuty finding type. Configure the rule to invoke an AWS Step Functions state machine to send an email alert and terminate a NAT gateway if a NAT gateway is detected. Store the runtime log as a text file in an Amazon S3 bucket.

D.

Create a custom AWS Config rule that checks for NAT gateways in an AWS account. Configure the AWS Config rule to perform an AWS Systems Manager Automation remediation action to send an email alert and terminate the NAT gateway if a NAT gateway is detected. Deploy the AWS Config rule and the Systems Manager runbooks to each account by using AWS CloudFormation StackSets

A retail company is running its service on AWS. The company’s architecture includes Application Load Balancers (ALBs) in public subnets. The ALB target groups are configured to send traffic tobackend Amazon EC2 instances in private subnets. These backend EC2 instances can call externally hosted services over the internet by using a NAT gateway.

The company has noticed in its billing that NAT gateway usage has increased significantly. A network engineer needs to find out the source of this increased usage.

Which options can the network engineer use to investigate the traffic through the NAT gateway? (Choose two.)

A.

Enable VPC flow logs on the NAT gateway's elastic network interface. Publish the logs to a log group in Amazon CloudWatch Logs. Use CloudWatch Logs Insights to query and analyze the logs.

B.

Enable NAT gateway access logs. Publish the logs to a log group in Amazon CloudWatch Logs. Use CloudWatch Logs Insights to query and analyze the logs.

C.

Configure Traffic Mirroring on the NAT gateway's elastic network interface. Send the traffic to an additional EC2 instance. Use tools such as tcpdump and Wireshark to query and analyze the mirrored traffic.

D.

Enable VPC flow logs on the NAT gateway's elastic network interface. Publish the logs to an Amazon S3 bucket. Create a custom table for the S3 bucket in Amazon Athena to describe the log structure. Use Athena to query and analyze the logs.

E.

Enable NAT gateway access logs. Publish the logs to an Amazon S3 bucket. Create a custom table for the S3 bucket in Amazon Athena to describe the log structure. Use Athena to query and analyze the logs.

A network engineer needs to build an encrypted connection between an on-premises data center and a VPC. The network engineer attaches the VPC to a virtual private gateway and sets up an AWS Site-to-Site VPN connection. The VPN tunnel is UP after configuration and is working. However, during rekey for phase 2 of the VPN negotiation, the customer gateway device is receiving different parameters than the parameters that the device is configured to support.

The network engineer checks the IPsec configuration of the VPN tunnel. The networkengineer notices that the customer gateway device is configured with the most secure encryption algorithms that the AWS Site-to-Site VPN configuration file provides.

What should the network engineer do to troubleshoot and correct the issue?

A.

Check the native virtual private gateway logs. Restrict the VPN tunnel options to the specific VPN parameters that the virtual private gateway requires.

B.

Check the native customer gateway logs. Restrict the VPN tunnel options to the specific VPN parameters that the customer gateway requires.

C.

Check Amazon CloudWatch logs of the virtual private gateway. Restrict the VPN tunnel options to the specific VPN parameters that the virtual private gateway requires.

D.

Check Amazon CloudWatch logs of the customer gateway. Restrict the VPN tunnel options to the specific VPN parameters that the customer gateway requires.

A company uses transit gateways to route traffic between the company's VPCs. Each transit gateway has a single route table. Each route table contains attachments and routes for the VPCs that are in the same AWS Region as the transit gateway. The route tables in each VPC also contain routes to all the other VPC CIDR ranges that are available through the transit gateways. Some VPCs route to local NAT gateways.

The company plans to add many new VPCs soon. A network engineer needs a solution to add new VPC CIDR ranges to the route tables in each VPC.

Which solution will meet these requirements in the MOST operationally efficient way?

A.

Create a new customer-managed prefix list. Add all VPC CIDR ranges to the new prefix list. Update the route tables in each VPC to use the new prefix list ID as the destination and the appropriate transit gateway ID as the target.

B.

Turn on default route table propagation for the transit gateway route tables. Turn on route propagation for each route table in each VPC.

C.

Update the route tables in each VPC to use 0.0.0.010 as the destination and the appropriate transit gateway ID as the target.

D.

Turn on default route table association for the transit gateway route tables. Turn on route propagation for each route table in each VPC.

A company is planning to create a service that requires encryption in transit. The traffic must not be decrypted between the client and the backend of the service. The company will implement the service by using the gRPC protocol over TCP port 443. The service will scale up to thousands of simultaneous connections. The backend of the service will be hosted on an Amazon Elastic Kubernetes Service (Amazon EKS) duster with the Kubernetes Cluster Autoscaler and the Horizontal Pod Autoscaler configured. The company needs to use mutual TLS for two-way authentication between the client and the backend.

Which solution will meet these requirements?

A.

Install the AWS Load Balancer Controller for Kubernetes. Using that controller, configure a Network Load Balancer with a TCP listener on port 443 to forward traffic to the IP addresses of the backend service Pods.

B.

Install the AWS Load Balancer Controller for Kubernetes. Using that controller, configure an Application Load Balancer with an HTTPS listener on port 443 to forward traffic to the IP addresses of the backend service Pods.

C.

Create a target group. Add the EKS managed node group's Auto Scaling group as a target Create an Application Load Balancer with an HTTPS listener on port 443 to forward traffic to the target group.

D.

Create a target group. Add the EKS managed node group’s Auto Scaling group as a target. Create a Network Load Balancer with a TLS listener on port 443 to forward traffic to the target group.

An IoT company sells hardware sensor modules that periodically send out temperature, humidity, pressure, and location data through the MQTT messaging protocol. The hardware sensor modules send this data to the company's on-premises MQTT brokers that run on Linux servers behind a load balancer. The hardware sensor modules have been hardcoded with public IP addresses to reach the brokers.

The company is growing and is acquiring customers across the world. The existing solution can no longer scale and is introducing additional latency because of the company's global presence. As a result, the company decides to migrate its entire infrastructure from on premises to the AWS Cloud. The company needs to migrate without reconfiguring the hardware sensor modules that are already deployed across the world. The solution also must minimize latency.

The company migrates the MQTT brokers to run on Amazon EC2 instances.

What should the company do next to meet these requirements?

A.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Use Bring Your Own IP (BYOIP) from the on-premises network with the NLB.

B.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the NLUse Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator.

C.

Place the EC2 instances behind an Application Load Balancer (ALB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the ALB. Use Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator

D.

Place the EC2 instances behind an Amazon CloudFront distribution. Use Bring Your Own IP (BYOIP) from the on-premises network with CloudFront.