Weekend Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmas50

Amazon Web Services ANS-C01 - Amazon AWS Certified Advanced Networking - Specialty

Page: 5 / 8
Total 288 questions

A company operates in the us-east-1 Region and the us-west-1 Region. The company is designing a solution to connect an on-premises data center to the company's AWS environment in us-east-1. The solution uses two AWS Direct Connect connections.

Traffic from us-west-1 to the data center needs to traverse the Direct Connect connections. A network engineer needs to set up active-passive functionality across the two Direct Connect connections by using a Direct Connect gateway to influence inbound traffic from VPCs that are in us-west-1 to the data center.

Which solution will meet these requirements?

A.

At the data center, set the local preference for the primary connection to be higher than the local preference for the secondary connection.

B.

Use AS path prepending to set the AS path on the primary connection to be longer than the AS path on the secondary connection.

C.

Use local preference BGP community tags to apply the 7224:7300 local preference BGP community tag to the prefixes for the primary connection. Apply the 7224:7100 local preference BGP community tag to the prefixes for the secondary connection.

D.

Use local preference BGP community tags to apply the 7224:9300 local preference BGP community tag to the prefixes for the primary connection. Apply the 7224:9100 local preference BGP community tag to the prefixes for secondary connection.

A company wants to analyze TCP internet traffic. The traffic originates from Amazon EC2 instances in the company’s VPC. The EC2 instances initiate connections through a NAT gateway.

The company wants to capture data about the traffic including source and destination IP addresses ports, and the first 8 bytes of the TCP segments of the traffic. The company needs to collect, store, and analyze all the required data points.

Which solution will meet these requirements?

A.

Configure the EC2 instances to be VPC traffic mirror sources. Deploy software on the traffic mirror target to forward the data to Amazon CloudWatch Logs. Analyze the data by using CloudWatch Logs Insights

B.

Configure the NAT gateway to be a VPC traffic mirror source. Deploy software on the traffic mirror target to forward the data to an Amazon S3 bucket. Analyze the data by using Amazon Athena.

C.

Turn on VPC Flow Logs for the EC2 instances. Specify the default format and set Amazon CloudWatch Logs as the log destination. Analyze the flow log data by using CloudWatch Logs Insights.

D.

Turn on VPC Flow Logs for the EC2 instances. Specify a custom format and set Amazon S3 as the log destination. Analyze the flow log data by using Amazon Athena.

A company has an AWS Site-to-Site VPN connection between its office and its VPC. Users report occasional failure of the connection to the application that is hosted inside the VPC. A network engineer discovers in the customer gateway logs that the Internet Key Exchange (IKE) session ends when the connection to the application fails.

What should the network engineer do to bring up the IKE session if the IKE session goes down?

A.

Set the dead peer detection (DPD) timeout action to Clear. Initiate traffic from the VPC to on premises.

B.

Set the dead peer detection (DPD) timeout action to Restart. Initiate traffic from on premises to the VPC.

C.

Set the dead peer detection (DPD) timeout action to None. Initiate traffic from the VPC to on premises.

D.

Set the dead peer detection (DPD) timeout action to Cancel. Initiate traffic from on premises to the VPC.

A company has been using an outdated application layer protocol for communication among applications. The company decides not to use this protocol anymore and must migrate allapplications to support a new protocol. The old protocol and the new protocol are TCP-based, but the protocols use different port numbers.

After several months of work, the company has migrated dozens of applications that run on Amazon EC2 instances and in containers. The company believes that all the applications have been migrated, but the company wants to verify this belief. A network engineer needs to verify that no application is still using the old protocol.

Which solution will meet these requirements without causing any downtime?

A.

Use Amazon Inspector and its Network Reachability rules package. Wait until the analysis has finished running to find out which EC2 instances are still listening to the old port.

B.

Enable Amazon GuardDuty. Use the graphical visualizations to filter for traffic that uses the port of the old protocol. Exclude all internet traffic to filter out occasions when the same port is used as an ephemeral port.

C.

Configure VPC flow logs to be delivered into an Amazon S3 bucket. Use Amazon Athena to query the data and to filter for the port number that is used by the old protocol.

D.

Inspect all security groups that are assigned to the EC2 instances that host the applications. Remove the port of the old protocol if that port is in the list of allowed ports. Verify that the applications are operating properly after the port is removed from the security groups.

A company needs to transfer data between its VPC and its on-premises data center. The data must travel through a connection that has dedicated bandwidth. The data also must be encrypted in transit. The company has been working with an AWS Partner Network(APN) Partner to establish the connection.

Which combination of steps will meet these requirements? (Choose three.)

A.

Request a hosted connection from the APN Partner.

B.

Request a hosted public VIF from the APN Partner.

C.

Create an AWS Site-to-Site VPN connection.

D.

Create an AWS Client VPN connection.

E.

Create a private VIF.

F.

Create a public VIF.

An IoT company collects data from thousands of sensors that are deployed in the Unites States and South Asia. The sensors use a proprietary communication protocol that is built on UDP to send the data to a fleet of Amazon EC2 instances. The instances are in an Auto Scaling group and run behind a Network Load Balancer (NLB). The instances, Auto Scaling group, and NLB are deployed in the us-west-2 Region.

Occasionally, the data from the sensors in South Asia gets lost in transit over the internet and does not reach the EC2 instances.

Which solutions will resolve this issue? (Choose two.)

A.

Use AWS Global Accelerator with the existing NLB.

B.

Create an Amazon CloudFront distribution. Specify the existing NLB as the origin.

C.

Create a second deployment of the EC2 instances and the NLB in the ap-south-1 Region. Use an Amazon Route 53 latency routing policy to resolve to the Region that provides the least latency.

D.

Create a second deployment of the EC2 instances and the NLB in the ap-south-1 Region. Use an Amazon Route 53 failover routing policy to resolve to an alternate Region in case packets are dropped.

E.

Turn on enhanced networking on the EC2 instances by using the most recent Elastic Network Adapter (ENA) drivers.

A network engineer needs to standardize a company's approach to centralizing and managing interface VPC endpoints for private communication with AWS services. The company uses AWS Transit Gateway for inter-VPC connectivity between AWS accounts through a hub-and-spokemodel. The company's network services team must manage all Amazon Route 53 zones and interface endpoints within a shared services AWS account. The company wants to use this centralized model to provide AWS resources with access to AWS Key Management Service (AWS KMS) without sending traffic over the public internet.

What should the network engineer do to meet these requirements?

A.

In the shared services account, create an interface endpoint for AWS KMS. Modify the interface endpoint by disabling the private DNS name. Create a private hosted zone in the shared services account with an alias record that points to the interface endpoint. Associate the private hosted zone with the spoke VPCs in each AWS account.

B.

In the shared services account, create an interface endpoint for AWS KMS. Modify the interface endpoint by disabling the private DNS name. Create a private hosted zone in each spoke AWS account with an alias record that points to the interface endpoint. Associate each private hosted zone with the shared services AWS account.

C.

In each spoke AWS account, create an interface endpoint for AWS KMS. Modify each interface endpoint by disabling the private DNS name. Create a private hosted zone in each spoke AWS account with an alias record that points to each interface endpoint. Associate each private hosted zone with the shared services AWS account.

D.

In each spoke AWS account, create an interface endpoint for AWS KMS. Modify each interface endpoint by disabling the private DNS name. Create a private hosted zone in the shared services account with an alias record that points to each interface endpoint. Associate the private hosted zone with the spoke VPCs in each AWS account.

A software company offers a software-as-a-service (SaaS) accounting application that is hosted in the AWS Cloud The application requires connectivity to the company's on-premises network. The company has two redundant 10 GB AWS Direct Connect connections between AWS and its on-premises network to accommodate the growing demand for the application.

The company already has encryption between its on-premises network and the colocation. The company needs to encrypt traffic between AWS and the edge routers in the colocation within the next few months. The company must maintain its current bandwidth.

What should a network engineer do to meet these requirements with the LEAST operational overhead?

A.

Deploy a new public VIF with encryption on the existing Direct Connect connections. Reroute traffic through the new public VIF.

B.

Create a virtual private gateway Deploy new AWS Site-to-Site VPN connections from on premises to the virtual private gateway Reroute traffic from the Direct Connect private VIF to the new VPNs.

C.

Deploy a new pair of 10 GB Direct Connect connections with MACsec. Configure MACsec on the edge routers. Reroute traffic to the new Direct Connect connections. Decommission the original Direct Connect connections

D.

Deploy a new pair of 10 GB Direct Connect connections with MACsec. Deploy a new public VIF on the new Direct Connect connections. Deploy two AWS Site-to-Site VPN connections on top of the new public VIF. Reroute traffic from the existing private VIF to the new Site-to-Site connections. Decommission the original Direct Connect connections.

A company runs an application across multiple AWS Regions and multiple Availability Zones. The company needs to expand to a new AWS Region. Low latency is critical to the functionality of the application.

A network engineer needs to gather metrics for the latency between the existing. Regions and the new Region. The network engineer must gather metrics for at least the previous 30 days.

Which solution will meet these requirements?

A.

Configure an AWS Network Access Analyzer Network Access Scope, and use the analysis to review the latency.

B.

Set up AWS Network Manager Infrastructure Performance. Publish network performance metrics to Amazon CloudWatch.

C.

Use an Amazon VPC Reachability Analyzer path to review the latency.

D.

Set up VPC Flow Logs. Publish log metrics to Amazon CloudWatch.

A company is using custom DNS servers that run BIND for name resolution in its VPCs. The VPCs are deployed across multiple AWS accounts that are part of the same organization in AWS Organizations. All the VPCs are connected to a transit gateway. The BIND servers are running in a central VPC and are configured to forward all queries for an on-premises DNS domain to DNS servers that are hosted in an on-premises data center. To ensure that all the VPCs use the custom DNS servers, a network engineer has configured a VPC DHCP options set in all the VPCs that specifies the custom DNS servers to be used as domain name servers.

Multiple development teams in the company want to use Amazon Elastic File System (Amazon EFS). A development team has created a new EFS file system but cannot mount the file system to one of its Amazon EC2 instances. The network engineer discovers that the EC2 instance cannot resolve the IP address for the EFS mount point fs-33444567d.efs.us-east-1.amazonaws.com. The network engineer needs to implement a solution so that development teams throughout the organization can mount EFS file systems.

Which combination of steps will meet these requirements? (Choose two.)

A.

Configure the BIND DNS servers in the central VPC to forward queries for efs.us-east-1.amazonaws.com to the Amazon provided DNS server (169.254.169.253).

B.

Create an Amazon Route 53 Resolver outbound endpoint in the central VPC. Update all the VPC DHCP options sets to use AmazonProvidedDNS for name resolution.

C.

Create an Amazon Route 53 Resolver inbound endpoint in the central VPUpdate all the VPC DHCP options sets to use the Route 53 Resolver inbound endpoint in the central VPC for name resolution.

D.

Create an Amazon Route 53 Resolver rule to forward queries for the on-premises domain to the on-premises DNS servers. Share the rule with the organization by using AWS Resource Access Manager (AWS RAM). Associate the rule with all the VPCs.

E.

Create an Amazon Route 53 private hosted zone for the efs.us-east-1.amazonaws.com domain. Associate the private hosted zone with the VPC where the EC2 instance is deployed. Create an A record for fs-33444567d.efs.us-east-1.amazonaws.com in the private hosted zone. Configure the A record to return the mount target of the EFS mount point.