ISC CISSP - Certified Information Systems Security Professional (CISSP)
Which of the following types of business continuity tests includes assessment of resilience to internal and external risks without endangering live operations?
Walkthrough
Simulation
Parallel
White box
The Answer Is:
BExplanation:
Simulation is the type of business continuity test that includes assessment of resilience to internal and external risks without endangering live operations. Business continuity is the ability of an organization to maintain or resume its critical functions and operations in the event of a disruption or disaster. Business continuity testing is the process of evaluating and validating the effectiveness and readiness of the business continuity plan (BCP) and the disaster recovery plan (DRP) through various methods and scenarios. Business continuity testing can provide several benefits, such as:
Improving the confidence and competence of the organization and its staff in handling a disruption or disaster
Enhancing the performance and efficiency of the organization and its systems in recovering from a disruption or disaster
Increasing the compliance and alignment of the organization and its plans with the internal or external requirements and standards
Facilitating the monitoring and improvement of the organization and its plans by identifying and addressing any gaps, issues, or risks
There are different types of business continuity tests, depending on the scope, purpose, and complexity of the test. Some of the common types are:
Walkthrough: a type of business continuity test that involves reviewing and discussing the BCP and DRP with the relevant stakeholders, such as the business continuity team, the management, and the staff. A walkthrough can provide a basic and qualitative assessment of the BCP and DRP, and can help to familiarize and educate the stakeholders with the plans and their roles and responsibilities.
Simulation: a type of business continuity test that involves performing and practicing the BCP and DRP with the relevant stakeholders, using simulated or hypothetical scenarios, such as a fire drill, a power outage, or a cyberattack. A simulation can provide a realistic and quantitative assessment of the BCP and DRP, and can help to test and train the stakeholders with the plans and their actions and reactions.
Parallel: a type of business continuity test that involves activating and operating the alternate site or system, while maintaining the normal operations at the primary site or system. A parallel test can provide a comprehensive and comparative assessment of the BCP and DRP, and can help to verify and validate the functionality and compatibility of the alternate site or system.
Full interruption: a type of business continuity test that involves shutting down and transferring the normal operations from the primary site or system to the alternate site or system. A full interruption test can provide a conclusive and definitive assessment of the BCP and DRP, and can help to evaluate and measure the impact and effectiveness of the plans.
Simulation is the type of business continuity test that includes assessment of resilience to internal and external risks without endangering live operations, because it can simulate various types of risks, such as natural, human, or technical, and assess how the organization and its systems can cope and recover from them, without actually causing any harm or disruption to the live operations. Simulation can also help to identify and mitigate any potential risks that might affect the live operations, and to improve the resilience and preparedness of the organization and its systems.
The other options are not the types of business continuity tests that include assessment of resilience to internal and external risks without endangering live operations, but rather types that have other objectives or effects. Walkthrough is a type of business continuity test that does not include assessment of resilience to internal and external risks, but rather a review and discussion of the BCP and DRP, without any actual testing or practice. Parallel is a type of business continuity test that does not endanger live operations, but rather maintains them, while activating and operating the alternate site or system. Full interruption is a type of business continuity test that does endanger live operations, by shutting them down and transferring them to the alternate site or system.
Which of the following is the FIRST step in the incident response process?
Determine the cause of the incident
Disconnect the system involved from the network
Isolate and contain the system involved
Investigate all symptoms to confirm the incident
The Answer Is:
DExplanation:
 Investigating all symptoms to confirm the incident is the first step in the incident response process. An incident is an event that violates or threatens the security, availability, integrity, or confidentiality of the IT systems or data. An incident response is a process that involves detecting, analyzing, containing, eradicating, recovering, and learning from an incident, using various methods and tools. An incident response can provide several benefits, such as:
Improving the security and risk management of the IT systems and data by identifying and addressing the security weaknesses and gaps
Enhancing the security and decision making of the IT systems and data by providing the evidence and information for the security analysis, evaluation, and reporting
Increasing the security and improvement of the IT systems and data by providing the feedback and input for the security response, remediation, and optimization
Facilitating the compliance and alignment of the IT systems and data with the internal or external requirements and standards
Investigating all symptoms to confirm the incident is the first step in the incident response process, because it can ensure that the incident is verified and validated, and that the incident response is initiated and escalated. A symptom is a sign or an indication that an incident may have occurred or is occurring, such as an alert, a log, or a report. Investigating all symptoms to confirm the incident involves collecting and analyzing the relevant data and information from various sources, such as the IT systems, the network, the users, or the external parties, and determining whether an incident has actually happened or is happening, and how serious or urgent it is. Investigating all symptoms to confirm the incident can also help to:
Prevent the false positives or negatives that might cause the incident response to be delayed or unnecessary
Identify the scope and impact of the incident on the IT systems and data
Notify and inform the appropriate stakeholders and authorities about the incident
Activate and coordinate the incident response team and resources
The other options are not the first steps in the incident response process, but rather steps that should be done after or along with investigating all symptoms to confirm the incident. Determining the cause of the incident is a step that should be done after investigating all symptoms to confirm the incident, because it can ensure that the root cause and source of the incident are identified and analyzed, and that the incident response is directed and focused. Determining the cause of the incident involves examining and testing the affected IT systems and data, and tracing and tracking the origin and path of the incident, using various techniques and tools, such as forensics, malware analysis, or reverse engineering. Determining the cause of the incident can also help to:
Understand the nature and behavior of the incident and the attacker
Detect and resolve any issues or risks caused by the incident
Prevent and mitigate any future incidents or attacks involving the same or similar cause
Support and enable the legal or regulatory actions or investigations against the incident or the attacker
Disconnecting the system involved from the network is a step that should be done along with investigating all symptoms to confirm the incident, because it can ensure that the system is isolated and protected from any external or internal influences or interferences, and that the incident response is conducted in a safe and controlled environment. Disconnecting the system involved from the network can also help to:
Prevent the incident from communicating or connecting with any other system or network, and potentially spreading or escalating the attack
Prevent the incident from receiving or sending any commands or data, and potentially altering or deleting the evidence
Prevent the incident from detecting or evading the incident response, and potentially hiding or destroying itself
Isolating and containing the system involved is a step that should be done after investigating all symptoms to confirm the incident, because it can ensure that the incident is confined and restricted, and that the incident response is continued and maintained. Isolating and containing the system involved involves applying and enforcing the appropriate security measures and controls to limit or stop the activity and impact of the incident on the IT systems and data, such as firewall rules, access policies, or encryption keys. Isolating and containing the system involved can also help to:
Minimize the damage and loss caused by the incident on the IT systems and data
Maximize the recovery and restoration of the IT systems and data
Support and enable the eradication and removal of the incident from the IT systems and data
Facilitate the learning and improvement of the IT systems and data from the incident
Which of the following is a PRIMARY advantage of using a third-party identity service?
Consolidation of multiple providers
Directory synchronization
Web based logon
Automated account management
The Answer Is:
DExplanation:
 Consolidation of multiple providers is the primary advantage of using a third-party identity service. A third-party identity service is a service that provides identity and access management (IAM) functions, such as authentication, authorization, and federation, for multiple applications or systems, using a single identity provider (IdP). A third-party identity service can offer various benefits, such as:
Improving the user experience and convenience by allowing the users to access multiple applications or systems with a single sign-on (SSO) or a federated identity
Enhancing the security and compliance by applying the consistent and standardized IAM policies and controls across multiple applications or systems
Increasing the scalability and flexibility by enabling the integration and interoperability of multiple applications or systems with different platforms and technologies
Reducing the cost and complexity by outsourcing the IAM functions to a third-party provider, and avoiding the duplication and maintenance of multiple IAM systems
Consolidation of multiple providers is the primary advantage of using a third-party identity service, because it can simplify and streamline the IAM architecture and processes, by reducing the number of IdPs and IAM systems that are involved in managing the identities and access for multiple applications or systems. Consolidation of multiple providers can also help to avoid the issues or risks that might arise from having multiple IdPs and IAM systems, such as the inconsistency, redundancy, or conflict of the IAM policies and controls, or the inefficiency, vulnerability, or disruption of the IAM functions.
The other options are not the primary advantages of using a third-party identity service, but rather secondary or specific advantages for different aspects or scenarios of using a third-party identity service. Directory synchronization is an advantage of using a third-party identity service, but it is more relevant for the scenario where the organization has an existing directory service, such as LDAP or Active Directory, that stores and manages the user accounts and attributes, and wants to synchronize them with the third-party identity service, to enable the SSO or federation for the users. Web based logon is an advantage of using a third-party identity service, but it is more relevant for the aspect where the third-party identity service uses a web-based protocol, such as SAML or OAuth, to facilitate the SSO or federation for the users, by redirecting them to a web-based logon page, where they can enter their credentials or consent. Automated account management is an advantage of using a third-party identity service, but it is more relevant for the aspect where the third-party identity service provides the IAM functions, such as provisioning, deprovisioning, or updating, for the user accounts and access rights, using an automated or self-service mechanism, such as SCIM or JIT.
With what frequency should monitoring of a control occur when implementing Information Security Continuous Monitoring (ISCM) solutions?
Continuously without exception for all security controls
Before and after each change of the control
At a rate concurrent with the volatility of the security control
Only during system implementation and decommissioning
The Answer Is:
CExplanation:
Monitoring of a control should occur at a rate concurrent with the volatility of the security control when implementing Information Security Continuous Monitoring (ISCM) solutions. ISCM is a process that involves maintaining the ongoing awareness of the security status, events, and activities of a system or network, by collecting, analyzing, and reporting the security data and information, using various methods and tools. ISCM can provide several benefits, such as:
Improving the security and risk management of the system or network by identifying and addressing the security weaknesses and gaps
Enhancing the security and decision making of the system or network by providing the evidence and information for the security analysis, evaluation, and reporting
Increasing the security and improvement of the system or network by providing the feedback and input for the security response, remediation, and optimization
Facilitating the compliance and alignment of the system or network with the internal or external requirements and standards
A security control is a measure or mechanism that is implemented to protect the system or network from the security threats or risks, by preventing, detecting, or correcting the security incidents or impacts. A security control can have various types, such as administrative, technical, or physical, and various attributes, such as preventive, detective, or corrective. A security control can also have different levels of volatility, which is the degree or frequency of change or variation of the security control, due to various factors, such as the security requirements, the threat landscape, or the system or network environment.
Monitoring of a control should occur at a rate concurrent with the volatility of the security control when implementing ISCM solutions, because it can ensure that the ISCM solutions can capture and reflect the current and accurate state and performance of the security control, and can identify and report any issues or risks that might affect the security control. Monitoring of a control at a rate concurrent with the volatility of the security control can also help to optimize the ISCM resources and efforts, by allocating them according to the priority and urgency of the security control.
The other options are not the correct frequencies for monitoring of a control when implementing ISCM solutions, but rather incorrect or unrealistic frequencies that might cause problems or inefficiencies for the ISCM solutions. Continuously without exception for all security controls is an incorrect frequency for monitoring of a control when implementing ISCM solutions, because it is not feasible or necessary to monitor all security controls at the same and constant rate, regardless of their volatility or importance. Continuously monitoring all security controls without exception might cause the ISCM solutions to consume excessive or wasteful resources and efforts, and might overwhelm or overload the ISCM solutions with too much or irrelevant data and information. Before and after each change of the control is an incorrect frequency for monitoring of a control when implementing ISCM solutions, because it is not sufficient or timely to monitor the security control only when there is a change of the security control, and not during the normal operation of the security control. Monitoring the security control only before and after each change might cause the ISCM solutions to miss or ignore the security status, events, and activities that occur between the changes of the security control, and might delay or hinder the ISCM solutions from detecting and responding to the security issues or incidents that affect the security control. Only during system implementation and decommissioning is an incorrect frequency for monitoring of a control when implementing ISCM solutions, because it is not appropriate or effective to monitor the security control only during the initial or final stages of the system or network lifecycle, and not during the operational or maintenance stages of the system or network lifecycle. Monitoring the security control only during system implementation and decommissioning might cause the ISCM solutions to neglect or overlook the security status, events, and activities that occur during the regular or ongoing operation of the system or network, and might prevent or limit the ISCM solutions from improving and optimizing the security control.
Recovery strategies of a Disaster Recovery planning (DRIP) MUST be aligned with which of the following?
Hardware and software compatibility issues
Applications’ critically and downtime tolerance
Budget constraints and requirements
Cost/benefit analysis and business objectives
The Answer Is:
DExplanation:
Recovery strategies of a Disaster Recovery planning (DRP) must be aligned with the cost/benefit analysis and business objectives. A DRP is a part of a BCP/DRP that focuses on restoring the normal operation of the organization’s IT systems and infrastructure after a disruption or disaster. A DRP should include various components, such as:
Risk assessment: a process that identifies and evaluates the potential threats and vulnerabilities that might affect the IT systems and infrastructure, and estimates the likelihood and impact of a disruption or disaster
Recovery objectives: a process that defines and quantifies the acceptable levels of recovery for the IT systems and infrastructure, such as the recovery point objective (RPO), which is the maximum amount of data loss that can be tolerated, and the recovery time objective (RTO), which is the maximum amount of downtime that can be tolerated
Recovery strategies: a process that selects and implements the appropriate methods and resources to recover the IT systems and infrastructure, such as backup, replication, redundancy, or failover
DRP document: a document that outlines and details the scope, purpose, and features of the DRP, such as the roles and responsibilities, the recovery procedures, and the contact information
Testing, training, and exercises: a process that evaluates and validates the effectiveness and readiness of the DRP, and educates and trains the relevant stakeholders, such as the IT staff, the management, and the users, on the DRP and their roles and responsibilities
Maintenance and review: a process that monitors and updates the DRP, and addresses any changes or issues that might affect the DRP, such as the IT requirements, the threat landscape, or the feedback and lessons learned
Recovery strategies of a DRP must be aligned with the cost/benefit analysis and business objectives, because it can ensure that the DRP is feasible and suitable, and that it can achieve the desired outcomes and objectives in a cost-effective and efficient manner. A cost/benefit analysis is a technique that compares the costs and benefits of different recovery strategies, and determines the optimal one that provides the best value for money. A business objective is a goal or a target that the organization wants to achieve through its IT systems and infrastructure, such as increasing the productivity, profitability, or customer satisfaction. A recovery strategy that is aligned with the cost/benefit analysis and business objectives can help to:
Optimize the use and allocation of the IT resources and funds for the recovery
Minimize the negative impacts and risks of a disruption or disaster on the IT systems and infrastructure
Maximize the positive outcomes and benefits of the recovery for the IT systems and infrastructure
Support and enable the achievement of the organizational goals and targets through the IT systems and infrastructure
The other options are not the factors that the recovery strategies of a DRP must be aligned with, but rather factors that should be considered or addressed when developing or implementing the recovery strategies of a DRP. Hardware and software compatibility issues are factors that should be considered when developing the recovery strategies of a DRP, because they can affect the functionality and interoperability of the IT systems and infrastructure, and may require additional resources or adjustments to resolve them. Applications’ criticality and downtime tolerance are factors that should be addressed when implementing the recovery strategies of a DRP, because they can determine the priority and urgency of the recovery for different applications, and may require different levels of recovery objectives and resources. Budget constraints and requirements are factors that should be considered when developing the recovery strategies of a DRP, because they can limit the availability and affordability of the IT resources and funds for the recovery, and may require trade-offs or compromises to balance them.
What should be the FIRST action to protect the chain of evidence when a desktop computer is involved?
Take the computer to a forensic lab
Make a copy of the hard drive
Start documenting
Turn off the computer
The Answer Is:
BExplanation:
 Making a copy of the hard drive should be the first action to protect the chain of evidence when a desktop computer is involved. A chain of evidence, also known as a chain of custody, is a process that documents and preserves the integrity and authenticity of the evidence collected from a crime scene, such as a desktop computer. A chain of evidence should include information such as:
The identity and role of the person who collected, handled, or transferred the evidence
The date and time of the collection, handling, or transfer of the evidence
The location and condition of the evidence
The method and tool used to collect, handle, or transfer the evidence
The signature or seal of the person who collected, handled, or transferred the evidence
Making a copy of the hard drive should be the first action to protect the chain of evidence when a desktop computer is involved, because it can ensure that the original hard drive is not altered, damaged, or destroyed during the forensic analysis, and that the copy can be used as a reliable and admissible source of evidence. Making a copy of the hard drive should also involve using a write blocker, which is a device or a software that prevents any modification or deletion of the data on the hard drive, and generating a hash value, which is a unique and fixed identifier that can verify the integrity and consistency of the data on the hard drive.
The other options are not the first actions to protect the chain of evidence when a desktop computer is involved, but rather actions that should be done after or along with making a copy of the hard drive. Taking the computer to a forensic lab is an action that should be done after making a copy of the hard drive, because it can ensure that the computer is transported and stored in a secure and controlled environment, and that the forensic analysis is conducted by qualified and authorized personnel. Starting documenting is an action that should be done along with making a copy of the hard drive, because it can ensure that the chain of evidence is maintained and recorded throughout the forensic process, and that the evidence can be traced and verified. Turning off the computer is an action that should be done after making a copy of the hard drive, because it can ensure that the computer is powered down and disconnected from any network or device, and that the computer is protected from any further damage or tampering.
What is the MOST important step during forensic analysis when trying to learn the purpose of an unknown application?
Disable all unnecessary services
Ensure chain of custody
Prepare another backup of the system
Isolate the system from the network
The Answer Is:
DExplanation:
 Isolating the system from the network is the most important step during forensic analysis when trying to learn the purpose of an unknown application. An unknown application is an application that is not recognized or authorized by the system or network administrator, and that may have been installed or executed without the user’s knowledge or consent. An unknown application may have various purposes, such as:
Providing a legitimate or useful function or service for the user, such as a utility or a tool
Providing an illegitimate or malicious function or service for the attacker, such as a malware or a backdoor
Providing a neutral or benign function or service for the developer, such as a trial or a demo
Forensic analysis is a process that involves examining and investigating the system or network for any evidence or traces of the unknown application, such as its origin, nature, behavior, and impact. Forensic analysis can provide several benefits, such as:
Identifying and classifying the unknown application as legitimate, malicious, or neutral
Determining and assessing the purpose and function of the unknown application
Detecting and resolving any issues or risks caused by the unknown application
Preventing and mitigating any future incidents or attacks involving the unknown application
Isolating the system from the network is the most important step during forensic analysis when trying to learn the purpose of an unknown application, because it can ensure that the system is isolated and protected from any external or internal influences or interferences, and that the forensic analysis is conducted in a safe and controlled environment. Isolating the system from the network can also help to:
Prevent the unknown application from communicating or connecting with any other system or network, and potentially spreading or escalating the attack
Prevent the unknown application from receiving or sending any commands or data, and potentially altering or deleting the evidence
Prevent the unknown application from detecting or evading the forensic analysis, and potentially hiding or destroying itself
The other options are not the most important steps during forensic analysis when trying to learn the purpose of an unknown application, but rather steps that should be done after or along with isolating the system from the network. Disabling all unnecessary services is a step that should be done after isolating the system from the network, because it can ensure that the system is optimized and simplified for the forensic analysis, and that the system resources and functions are not consumed or affected by any irrelevant or redundant services. Ensuring chain of custody is a step that should be done along with isolating the system from the network, because it can ensure that the integrity and authenticity of the evidence are maintained and documented throughout the forensic process, and that the evidence can be traced and verified. Preparing another backup of the system is a step that should be done after isolating the system from the network, because it can ensure that the system data and configuration are preserved and replicated for the forensic analysis, and that the system can be restored and recovered in case of any damage or loss.
What is the PRIMARY reason for implementing change management?
Certify and approve releases to the environment
Provide version rollbacks for system changes
Ensure that all applications are approved
Ensure accountability for changes to the environment
The Answer Is:
DExplanation:
Ensuring accountability for changes to the environment is the primary reason for implementing change management. Change management is a process that ensures that any changes to the system or network environment, such as the hardware, software, configuration, or documentation, are planned, approved, implemented, and documented in a controlled and consistent manner. Change management can provide several benefits, such as:
Improving the security and reliability of the system or network environment by preventing or reducing the errors, conflicts, or disruptions that might occur due to the changes
Enhancing the performance and efficiency of the system or network environment by optimizing the resources and functions
Increasing the compliance and alignment of the system or network environment with the internal or external requirements and standards
Facilitating the monitoring and improvement of the system or network environment by tracking and logging the changes and their outcomes
Ensuring accountability for changes to the environment is the primary reason for implementing change management, because it can ensure that the changes are authorized, justified, and traceable, and that the parties involved in the changes are responsible and accountable for their actions and results. Accountability can also help to deter or detect any unauthorized or malicious changes that might compromise the system or network environment.
The other options are not the primary reasons for implementing change management, but rather secondary or specific reasons for different aspects or phases of change management. Certifying and approving releases to the environment is a reason for implementing change management, but it is more relevant for the approval phase of change management, which is the phase that involves reviewing and validating the changes and their impacts, and granting or denying the permission to proceed with the changes. Providing version rollbacks for system changes is a reason for implementing change management, but it is more relevant for the implementation phase of change management, which is the phase that involves executing and monitoring the changes and their effects, and providing the backup and recovery options for the changes. Ensuring that all applications are approved is a reason for implementing change management, but it is more relevant for the application changes, which are the changes that affect the software components or services that provide the functionality or logic of the system or network environment.
A Business Continuity Plan/Disaster Recovery Plan (BCP/DRP) will provide which of the following?
Guaranteed recovery of all business functions
Minimization of the need decision making during a crisis
Insurance against litigation following a disaster
Protection from loss of organization resources
The Answer Is:
BExplanation:
Minimization of the need for decision making during a crisis is the main benefit that a Business Continuity Plan/Disaster Recovery Plan (BCP/DRP) will provide. A BCP/DRP is a set of policies, procedures, and resources that enable an organization to continue or resume its critical functions and operations in the event of a disruption or disaster. A BCP/DRP can provide several benefits, such as:
Improving the resilience and preparedness of the organization and its staff in handling a disruption or disaster
Enhancing the performance and efficiency of the organization and its systems in recovering from a disruption or disaster
Increasing the compliance and alignment of the organization and its plans with the internal or external requirements and standards
Facilitating the monitoring and improvement of the organization and its plans by identifying and addressing any gaps, issues, or risks
Minimization of the need for decision making during a crisis is the main benefit that a BCP/DRP will provide, because it can ensure that the organization and its staff have a clear and consistent guidance and direction on how to respond and act during a disruption or disaster, and avoid any confusion, uncertainty, or inconsistency that might worsen the situation or impact. A BCP/DRP can also help to reduce the stress and pressure on the organization and its staff during a crisis, and increase their confidence and competence in executing the plans.
The other options are not the benefits that a BCP/DRP will provide, but rather unrealistic or incorrect expectations or outcomes of a BCP/DRP. Guaranteed recovery of all business functions is not a benefit that a BCP/DRP will provide, because it is not possible or feasible to recover all business functions after a disruption or disaster, especially if the disruption or disaster is severe or prolonged. A BCP/DRP can only prioritize and recover the most critical or essential business functions, and may have to suspend or terminate the less critical or non-essential business functions. Insurance against litigation following a disaster is not a benefit that a BCP/DRP will provide, because it is not a guarantee or protection that the organization will not face any legal or regulatory consequences or liabilities after a disruption or disaster, especially if the disruption or disaster is caused by the organization’s negligence or misconduct. A BCP/DRP can only help to mitigate or reduce the legal or regulatory risks, and may have to comply with or report to the relevant authorities or parties. Protection from loss of organization resources is not a benefit that a BCP/DRP will provide, because it is not a prevention or avoidance of any damage or destruction of the organization’s assets or resources during a disruption or disaster, especially if the disruption or disaster is physical or natural. A BCP/DRP can only help to restore or replace the lost or damaged assets or resources, and may have to incur some costs or losses.
A continuous information security-monitoring program can BEST reduce risk through which of the following?
Collecting security events and correlating them to identify anomalies
Facilitating system-wide visibility into the activities of critical user accounts
Encompassing people, process, and technology
Logging both scheduled and unscheduled system changes
The Answer Is:
CExplanation:
 A continuous information security monitoring program can best reduce risk through encompassing people, process, and technology. A continuous information security monitoring program is a process that involves maintaining the ongoing awareness of the security status, events, and activities of a system or network, by collecting, analyzing, and reporting the security data and information, using various methods and tools. A continuous information security monitoring program can provide several benefits, such as:
Improving the security and risk management of the system or network by identifying and addressing the security weaknesses and gaps
Enhancing the security and decision making of the system or network by providing the evidence and information for the security analysis, evaluation, and reporting
Increasing the security and improvement of the system or network by providing the feedback and input for the security response, remediation, and optimization
Facilitating the compliance and alignment of the system or network with the internal or external requirements and standards
A continuous information security monitoring program can best reduce risk through encompassing people, process, and technology, because it can ensure that the continuous information security monitoring program is holistic and comprehensive, and that it covers all the aspects and elements of the system or network security. People, process, and technology are the three pillars of a continuous information security monitoring program, and they represent the following:
People: the human resources that are involved in the continuous information security monitoring program, such as the security analysts, the system administrators, the management, and the users. People are responsible for defining the security objectives and requirements, implementing and operating the security tools and controls, and monitoring and responding to the security events and incidents.
Process: the procedures and policies that are followed in the continuous information security monitoring program, such as the security standards and guidelines, the security roles and responsibilities, the security workflows and tasks, and the security metrics and indicators. Process is responsible for establishing and maintaining the security governance and compliance, ensuring the security consistency and efficiency, and measuring and evaluating the security performance and effectiveness.
Technology: the tools and systems that are used in the continuous information security monitoring program, such as the security sensors and agents, the security loggers and collectors, the security analyzers and correlators, and the security dashboards and reports. Technology is responsible for supporting and enabling the security functions and capabilities, providing the security visibility and awareness, and delivering the security data and information.
The other options are not the best ways to reduce risk through a continuous information security monitoring program, but rather specific or partial ways that can contribute to the risk reduction. Collecting security events and correlating them to identify anomalies is a specific way to reduce risk through a continuous information security monitoring program, but it is not the best way, because it only focuses on one aspect of the security data and information, and it does not address the other aspects, such as the security objectives and requirements, the security controls and measures, and the security feedback and improvement. Facilitating system-wide visibility into the activities of critical user accounts is a partial way to reduce risk through a continuous information security monitoring program, but it is not the best way, because it only covers one element of the system or network security, and it does not cover the other elements, such as the security threats and vulnerabilities, the security incidents and impacts, and the security response and remediation. Logging both scheduled and unscheduled system changes is a specific way to reduce risk through a continuous information security monitoring program, but it is not the best way, because it only focuses on one type of the security events and activities, and it does not focus on the other types, such as the security alerts and notifications, the security analysis and correlation, and the security reporting and documentation.
What would be the MOST cost effective solution for a Disaster Recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours?
Warm site
Hot site
Mirror site
Cold site
The Answer Is:
AExplanation:
A warm site is the most cost effective solution for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours. A DR site is a backup facility that can be used to restore the normal operation of the organization’s IT systems and infrastructure after a disruption or disaster. A DR site can have different levels of readiness and functionality, depending on the organization’s recovery objectives and budget. The main types of DR sites are:
Hot site: a DR site that is fully operational and equipped with the necessary hardware, software, telecommunication lines, and network connectivity to allow the organization to be up and running almost immediately. A hot site has all the required servers, workstations, and communications links, and can function as a branch office or data center that is online and connected to the production network. A hot site also has a backup of the data from the systems at the primary site, which may be replicated in real time or near real time. A hot site greatly reduces or eliminates downtime for the organization, but it is also very expensive to maintain and operate.
Warm site: a DR site that is partially operational and equipped with some of the hardware, software, telecommunication lines, and network connectivity to allow the organization to be up and running within a short time. A warm site has some of the required servers, workstations, and communications links, and can function as a temporary office or data center that is offline or partially connected to the production network. A warm site may have a backup of the data from the systems at the primary site, but it is not updated or synchronized as frequently as a hot site. A warm site reduces downtime for the organization, but it is also less expensive than a hot site.
Cold site: a DR site that is not operational and equipped with only the basic infrastructure and environmental support systems to allow the organization to be up and running within a long time. A cold site has none of the required servers, workstations, and communications links, and cannot function as an office or data center until they are installed and configured. A cold site does not have a backup of the data from the systems at the primary site, and it has to be restored from other sources, such as tapes or disks. A cold site increases downtime for the organization, but it is also the cheapest option among the DR sites.
Mirror site: a DR site that is an exact replica of the primary site, with the same hardware, software, telecommunication lines, and network connectivity, and with the same data and applications. A mirror site is always online and synchronized with the primary site, and can take over the operation of the organization seamlessly in the event of a disruption or disaster. A mirror site eliminates downtime for the organization, but it is also the most expensive option among the DR sites.
A warm site is the most cost effective solution for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours, because it can provide a balance between the recovery time and the recovery cost. A warm site can enable the organization to resume its critical functions and operations within a reasonable time frame, without spending too much on the DR site maintenance and operation. A warm site can also provide some flexibility and scalability for the organization to adjust its recovery strategies and resources according to its needs and priorities.
The other options are not the most cost effective solutions for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours, but rather solutions that are either too costly or too slow for the organization’s recovery objectives and budget. A hot site is a solution that is too costly for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours, because it requires the organization to invest a lot of money on the DR site equipment, software, and services, and to pay for the ongoing operational and maintenance costs. A hot site may be more suitable for the organization’s systems that cannot be unavailable for more than a few hours or minutes, or that have very high availability and performance requirements. A mirror site is a solution that is too costly for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours, because it requires the organization to duplicate its entire primary site, with the same hardware, software, data, and applications, and to keep them online and synchronized at all times. A mirror site may be more suitable for the organization’s systems that cannot afford any downtime or data loss, or that have very strict compliance and regulatory requirements. A cold site is a solution that is too slow for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours, because it requires the organization to spend a lot of time and effort on the DR site installation, configuration, and restoration, and to rely on other sources of backup data and applications. A cold site may be more suitable for the organization’s systems that can be unavailable for more than a few days or weeks, or that have very low criticality and priority.
When is a Business Continuity Plan (BCP) considered to be valid?
When it has been validated by the Business Continuity (BC) manager
When it has been validated by the board of directors
When it has been validated by all threat scenarios
When it has been validated by realistic exercises
The Answer Is:
DExplanation:
A Business Continuity Plan (BCP) is considered to be valid when it has been validated by realistic exercises. A BCP is a part of a BCP/DRP that focuses on ensuring the continuous operation of the organization’s critical business functions and processes during and after a disruption or disaster. A BCP should include various components, such as:
Business impact analysis: a process that identifies and prioritizes the critical business functions and processes, and assesses the potential impacts and risks of a disruption or disaster on them
Recovery strategies: a process that defines and selects the appropriate methods and resources to recover the critical business functions and processes, such as alternate sites, backup systems, or recovery teams
BCP document: a document that outlines and details the scope, purpose, and features of the BCP, such as the roles and responsibilities, the recovery procedures, and the contact information
Testing, training, and exercises: a process that evaluates and validates the effectiveness and readiness of the BCP, and educates and trains the relevant stakeholders, such as the staff, the management, and the customers, on the BCP and their roles and responsibilities
Maintenance and review: a process that monitors and updates the BCP, and addresses any changes or issues that might affect the BCP, such as the business requirements, the threat landscape, or the feedback and lessons learned
A BCP is considered to be valid when it has been validated by realistic exercises, because it can ensure that the BCP is practical and applicable, and that it can achieve the desired outcomes and objectives in a real-life scenario. Realistic exercises are a type of testing, training, and exercises that involve performing and practicing the BCP with the relevant stakeholders, using simulated or hypothetical scenarios, such as a fire drill, a power outage, or a cyberattack. Realistic exercises can provide several benefits, such as:
Improving the confidence and competence of the organization and its staff in handling a disruption or disaster
Enhancing the performance and efficiency of the organization and its systems in recovering from a disruption or disaster
Increasing the compliance and alignment of the organization and its plans with the internal or external requirements and standards
Facilitating the monitoring and improvement of the organization and its plans by identifying and addressing any gaps, issues, or risks
The other options are not the criteria for considering a BCP to be valid, but rather the steps or parties that are involved in developing or approving a BCP. When it has been validated by the Business Continuity (BC) manager is not a criterion for considering a BCP to be valid, but rather a step that is involved in developing a BCP. The BC manager is the person who is responsible for overseeing and coordinating the BCP activities and processes, such as the business impact analysis, the recovery strategies, the BCP document, the testing, training, and exercises, and the maintenance and review. The BC manager can validate the BCP by reviewing and verifying the BCP components and outcomes, and ensuring that they meet the BCP standards and objectives. However, the validation by the BC manager is not enough to consider the BCP to be valid, as it does not test or demonstrate the BCP in a realistic scenario. When it has been validated by the board of directors is not a criterion for considering a BCP to be valid, but rather a party that is involved in approving a BCP. The board of directors is the group of people who are elected by the shareholders to represent their interests and to oversee the strategic direction and governance of the organization. The board of directors can approve the BCP by endorsing and supporting the BCP components and outcomes, and allocating the necessary resources and funds for the BCP. However, the approval by the board of directors is not enough to consider the BCP to be valid, as it does not test or demonstrate the BCP in a realistic scenario. When it has been validated by all threat scenarios is not a criterion for considering a BCP to be valid, but rather an unrealistic or impossible expectation for validating a BCP. A threat scenario is a description or a simulation of a possible or potential disruption or disaster that might affect the organization’s critical business functions and processes, such as a natural hazard, a human error, or a technical failure. A threat scenario can be used to test and validate the BCP by measuring and evaluating the BCP’s performance and effectiveness in responding and recovering from the disruption or disaster. However, it is not possible or feasible to validate the BCP by all threat scenarios, as there are too many or unknown threat scenarios that might occur, and some threat scenarios might be too severe or complex to simulate or test. Therefore, the BCP should be validated by the most likely or relevant threat scenarios, and not by all threat scenarios.
What is the BEST approach for controlling access to highly sensitive information when employees have the same level of security clearance?
Audit logs
Role-Based Access Control (RBAC)
Two-factor authentication
Application of least privilege
The Answer Is:
DExplanation:
Applying the principle of least privilege is the best approach for controlling access to highly sensitive information when employees have the same level of security clearance. The principle of least privilege is a security concept that states that every user or process should have the minimum amount of access rights and permissions that are necessary to perform their tasks or functions, and nothing more. The principle of least privilege can provide several benefits, such as:
Improving the security and confidentiality of the information by limiting the access and exposure of the sensitive data to the authorized users and purposes
Reducing the risk and impact of unauthorized access or disclosure of the information by minimizing the attack surface and the potential damage
Increasing the accountability and auditability of the information by tracking and logging the access and usage of the sensitive data
Enhancing the performance and efficiency of the system by reducing the complexity and overhead of the access control mechanisms
Applying the principle of least privilege is the best approach for controlling access to highly sensitive information when employees have the same level of security clearance, because it can ensure that the employees can only access the information that is relevant and necessary for their tasks or functions, and that they cannot access or manipulate the information that is beyond their scope or authority. For example, if the highly sensitive information is related to a specific project or department, then only the employees who are involved in that project or department should have access to that information, and not the employees who have the same level of security clearance but are not involved in that project or department.
The other options are not the best approaches for controlling access to highly sensitive information when employees have the same level of security clearance, but rather approaches that have other purposes or effects. Audit logs are records that capture and store the information about the events and activities that occur within a system or a network, such as the access and usage of the sensitive data. Audit logs can provide a reactive and detective layer of security by enabling the monitoring and analysis of the system or network behavior, and facilitating the investigation and response of the incidents. However, audit logs cannot prevent or reduce the access or disclosure of the sensitive information, but rather provide evidence or clues after the fact. Role-Based Access Control (RBAC) is a method that enforces the access rights and permissions of the users based on their roles or functions within the organization, rather than their identities or attributes. RBAC can provide a granular and dynamic layer of security by defining and assigning the roles and permissions according to the organizational structure and policies. However, RBAC cannot control the access to highly sensitive information when employees have the same level of security clearance and the same role or function within the organization, but rather rely on other criteria or mechanisms. Two-factor authentication is a technique that verifies the identity of the users by requiring them to provide two pieces of evidence or factors, such as something they know (e.g., password, PIN), something they have (e.g., token, smart card), or something they are (e.g., fingerprint, face). Two-factor authentication can provide a strong and preventive layer of security by preventing unauthorized access to the system or network by the users who do not have both factors. However, two-factor authentication cannot control the access to highly sensitive information when employees have the same level of security clearance and the same two factors, but rather rely on other criteria or mechanisms.
Users require access rights that allow them to view the average salary of groups of employees. Which control would prevent the users from obtaining an individual employee’s salary?
Limit access to predefined queries
Segregate the database into a small number of partitions each with a separate security level
Implement Role Based Access Control (RBAC)
Reduce the number of people who have access to the system for statistical purposes
The Answer Is:
AExplanation:
Limiting access to predefined queries is the control that would prevent the users from obtaining an individual employee’s salary, if they only require access rights that allow them to view the average salary of groups of employees. A query is a request for information from a database, which can be expressed in a structured query language (SQL) or a graphical user interface (GUI). A query can specify the criteria, conditions, and operations for selecting, filtering, sorting, grouping, and aggregating the data from the database. A predefined query is a query that has been created and stored in advance by the database administrator or the data owner, and that can be executed by the authorized users without any modification. A predefined query can provide several benefits, such as:
Improving the performance and efficiency of the database by reducing the processing time and resources required for executing the queries
Enhancing the security and confidentiality of the database by restricting the access and exposure of the sensitive data to the authorized users and purposes
Increasing the accuracy and reliability of the database by preventing the errors or inconsistencies that might occur due to the user input or modification of the queries
Reducing the cost and complexity of the database by simplifying the query design and management
Limiting access to predefined queries is the control that would prevent the users from obtaining an individual employee’s salary, if they only require access rights that allow them to view the average salary of groups of employees, because it can ensure that the users can only access the data that is relevant and necessary for their tasks, and that they cannot access or manipulate the data that is beyond their scope or authority. For example, a predefined query can be created and stored that calculates and displays the average salary of groups of employees based on certain criteria, such as department, position, or experience. The users who need to view this information can execute this predefined query, but they cannot modify it or create their own queries that might reveal the individual employee’s salary or other sensitive data.
The other options are not the controls that would prevent the users from obtaining an individual employee’s salary, if they only require access rights that allow them to view the average salary of groups of employees, but rather controls that have other purposes or effects. Segregating the database into a small number of partitions each with a separate security level is a control that would improve the performance and security of the database by dividing it into smaller and manageable segments that can be accessed and processed independently and concurrently. However, this control would not prevent the users from obtaining an individual employee’s salary, if they have access to the partition that contains the salary data, and if they can create or modify their own queries. Implementing Role Based Access Control (RBAC) is a control that would enforce the access rights and permissions of the users based on their roles or functions within the organization, rather than their identities or attributes. However, this control would not prevent the users from obtaining an individual employee’s salary, if their roles or functions require them to access the salary data, and if they can create or modify their own queries. Reducing the number of people who have access to the system for statistical purposes is a control that would reduce the risk and impact of unauthorized access or disclosure of the sensitive data by minimizing the exposure and distribution of the data. However, this control would not prevent the users from obtaining an individual employee’s salary, if they are among the people who have access to the system, and if they can create or modify their own queries.
A manufacturing organization wants to establish a Federated Identity Management (FIM) system with its 20 different supplier companies. Which of the following is the BEST solution for the manufacturing organization?
Trusted third-party certification
Lightweight Directory Access Protocol (LDAP)
Security Assertion Markup language (SAML)
Cross-certification
The Answer Is:
CExplanation:
Security Assertion Markup Language (SAML) is the best solution for the manufacturing organization that wants to establish a Federated Identity Management (FIM) system with its 20 different supplier companies. FIM is a process that allows the sharing and recognition of identities across different organizations that have a trust relationship. FIM enables the users of one organization to access the resources or services of another organization without having to create or maintain multiple accounts or credentials. FIM can provide several benefits, such as:
Improving the user experience and convenience by reducing the need for multiple logins and passwords
Enhancing the security and privacy by minimizing the exposure and duplication of sensitive information
Increasing the efficiency and productivity by streamlining the authentication and authorization processes
Reducing the cost and complexity by simplifying the identity management and administration
SAML is a standard protocol that supports FIM by allowing the exchange of authentication and authorization information between different parties. SAML uses XML-based messages, called assertions, to convey the identity, attributes, and entitlements of a user to a service provider. SAML defines three roles for the parties involved in FIM:
Identity provider (IdP): the party that authenticates the user and issues the SAML assertion
Service provider (SP): the party that provides the resource or service that the user wants to access
User or principal: the party that requests access to the resource or service
SAML works as follows:
The user requests access to a resource or service from the SP
The SP redirects the user to the IdP for authentication
The IdP authenticates the user and generates a SAML assertion that contains the user’s identity, attributes, and entitlements
The IdP sends the SAML assertion to the SP
The SP validates the SAML assertion and grants or denies access to the user based on the information in the assertion
SAML is the best solution for the manufacturing organization that wants to establish a FIM system with its 20 different supplier companies, because it can enable the seamless and secure access to the resources or services across the different organizations, without requiring the users to create or maintain multiple accounts or credentials. SAML can also provide interoperability and compatibility between different platforms and technologies, as it is based on a standard and open protocol.
The other options are not the best solutions for the manufacturing organization that wants to establish a FIM system with its 20 different supplier companies, but rather solutions that have other limitations or drawbacks. Trusted third-party certification is a process that involves a third party, such as a certificate authority (CA), that issues and verifies digital certificates that contain the public key and identity information of a user or an entity. Trusted third-party certification can provide authentication and encryption for the communication between different parties, but it does not provide authorization or entitlement information for the access to the resources or services. Lightweight Directory Access Protocol (LDAP) is a protocol that allows the access and management of directory services, such as Active Directory, that store the identity and attribute information of users and entities. LDAP can provide a centralized and standardized way to store and retrieve identity and attribute information, but it does not provide a mechanism to exchange or federate the information across different organizations. Cross-certification is a process that involves two or more CAs that establish a trust relationship and recognize each other’s certificates. Cross-certification can extend the trust and validity of the certificates across different domains or organizations, but it does not provide a mechanism to exchange or federate the identity, attribute, or entitlement information.