Winter Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ecus65

Amazon Web Services MLA-C01 - AWS Certified Machine Learning Engineer - Associate

Page: 3 / 7
Total 207 questions

A company is gathering audio, video, and text data in various languages. The company needs to use a large language model (LLM) to summarize the gathered data that is in Spanish.

Which solution will meet these requirements in the LEAST amount of time?

A.

Train and deploy a model in Amazon SageMaker to convert the data into English text. Train and deploy an LLM in SageMaker to summarize the text.

B.

Use Amazon Transcribe and Amazon Translate to convert the data into English text. Use Amazon Bedrock with the Jurassic model to summarize the text.

C.

Use Amazon Rekognition and Amazon Translate to convert the data into English text. Use Amazon Bedrock with the Anthropic Claude model to summarize the text.

D.

Use Amazon Comprehend and Amazon Translate to convert the data into English text. Use Amazon Bedrock with the Stable Diffusion model to summarize the text.

A company has a team of data scientists who use Amazon SageMaker notebook instances to test ML models. When the data scientists need new permissions, the company attaches the permissions to each individual role that was created during the creation of the SageMaker notebook instance.

The company needs to centralize management of the team's permissions.

Which solution will meet this requirement?

A.

Create a single IAM role that has the necessary permissions. Attach the role to each notebook instance that the team uses.

B.

Create a single IAM group. Add the data scientists to the group. Associate the group with each notebook instance that the team uses.

C.

Create a single IAM user. Attach the AdministratorAccess AWS managed IAM policy to the user. Configure each notebook instance to use the IAM user.

D.

Create a single IAM group. Add the data scientists to the group. Create an IAM role. Attach the AdministratorAccess AWS managed IAM policy to the role. Associate the role with the group. Associate the group with each notebook instance that the team uses.

A company has a Retrieval Augmented Generation (RAG) application that uses a vector database to store embeddings of documents. The company must migrate the application to AWS and must implement a solution that provides semantic search of text files. The company has already migrated the text repository to an Amazon S3 bucket.

Which solution will meet these requirements?

A.

Use an AWS Batch job to process the files and generate embeddings. Use AWS Glue to store the embeddings. Use SQL queries to perform the semantic searches.

B.

Use a custom Amazon SageMaker notebook to run a custom script to generate embeddings. Use SageMaker Feature Store to store the embeddings. Use SQL queries to perform the semantic searches.

C.

Use the Amazon Kendra S3 connector to ingest the documents from the S3 bucket into Amazon Kendra. Query Amazon Kendra to perform the semantic searches.

D.

Use an Amazon Textract asynchronous job to ingest the documents from the S3 bucket. Query Amazon Textract to perform the semantic searches.

An ML engineer needs to use Amazon SageMaker to fine-tune a large language model (LLM) for text summarization. The ML engineer must follow a low-code no-code (LCNC) approach.

Which solution will meet these requirements?

A.

Use SageMaker Studio to fine-tune an LLM that is deployed on Amazon EC2 instances.

B.

Use SageMaker Autopilot to fine-tune an LLM that is deployed by a custom API endpoint.

C.

Use SageMaker Autopilot to fine-tune an LLM that is deployed on Amazon EC2 instances.

D.

Use SageMaker Autopilot to fine-tune an LLM that is deployed by SageMaker JumpStart.

A company needs to analyze a large dataset that is stored in Amazon S3 in Apache Parquet format. The company wants to use one-hot encoding for some of the columns.

The company needs a no-code solution to transform the data. The solution must store the transformed data back to the same S3 bucket for model training.

Which solution will meet these requirements?

A.

Configure an AWS Glue DataBrew project that connects to the data. Use the DataBrew interactive interface to create a recipe that performs the one-hot encoding transformation. Create a job to apply the transformation and write the output back to an S3 bucket.

B.

Use Amazon Athena SQL queries to perform the one-hot encoding transformation.

C.

Use an AWS Glue ETL interactive notebook to perform the transformation.

D.

Use Amazon Redshift Spectrum to perform the transformation.

A company is building a deep learning model on Amazon SageMaker. The company uses a large amount of data as the training dataset. The company needs to optimize the model's hyperparameters to minimize the loss function on the validation dataset.

Which hyperparameter tuning strategy will accomplish this goal with the LEAST computation time?

A.

Hyperbaric!

B.

Grid search

C.

Bayesian optimization

D.

Random search

An ML engineer is tuning an image classification model that shows poor performance on one of two available classes during prediction. Analysis reveals that the images whose class the model performed poorly on represent an extremely small fraction of the whole training dataset.

The ML engineer must improve the model's performance.

Which solution will meet this requirement?

A.

Optimize for accuracy. Use image augmentation on the less common images to generate new samples.

B.

Optimize for F1 score. Use image augmentation on the less common images to generate new samples.

C.

Optimize for accuracy. Use Synthetic Minority Oversampling Technique (SMOTE) on the less common images to generate new samples.

D.

Optimize for F1 score. Use Synthetic Minority Oversampling Technique (SMOTE) on the less common images to generate new samples.

A company is building an Amazon SageMaker AI pipeline for an ML model. The pipeline uses distributed processing and training.

An ML engineer needs to encrypt network communication between instances that run distributed jobs. The ML engineer configures the distributed jobs to run in a private VPC.

What should the ML engineer do to meet the encryption requirement?

A.

Enable network isolation.

B.

Configure traffic encryption by using security groups.

C.

Enable inter-container traffic encryption.

D.

Enable VPC flow logs.

An ML engineer is working on an ML model to predict the prices of similarly sized homes. The model will base predictions on several features The ML engineer will use the following feature engineering techniques to estimate the prices of the homes:

• Feature splitting

• Logarithmic transformation

• One-hot encoding

• Standardized distribution

Select the correct feature engineering techniques for the following list of features. Each feature engineering technique should be selected one time or not at all (Select three.)

A financial company receives a high volume of real-time market data streams from an external provider. The streams consist of thousands of JSON records every second.

The company needs to implement a scalable solution on AWS to identify anomalous data points.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Ingest real-time data into Amazon Kinesis data streams. Use the built-in RANDOM_CUT_FOREST function in Amazon Managed Service for Apache Flink to process the data streams and to detect data anomalies.

B.

Ingest real-time data into Amazon Kinesis data streams. Deploy an Amazon SageMaker endpoint for real-time outlier detection. Create an AWS Lambda function to detect anomalies. Use the data streams to invoke the Lambda function.

C.

Ingest real-time data into Apache Kafka on Amazon EC2 instances. Deploy an Amazon SageMaker endpoint for real-time outlier detection. Create an AWS Lambda function to detect anomalies. Use the data streams to invoke the Lambda function.

D.

Send real-time data to an Amazon Simple Queue Service (Amazon SQS) FIFO queue. Create an AWS Lambda function to consume the queue messages. Program the Lambda function to start an AWS Glue extract, transform, and load (ETL) job for batch processing and anomaly detection.