Weekend Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmas50

Amazon Web Services MLS-C01 - AWS Certified Machine Learning - Specialty

Page: 3 / 10
Total 330 questions

A company has an ecommerce website with a product recommendation engine built in TensorFlow. The recommendation engine endpoint is hosted by Amazon SageMaker. Three compute-optimized instances support the expected peak load of the website.

Response times on the product recommendation page are increasing at the beginning of each month. Some users are encountering errors. The website receives the majority of its traffic between 8 AM and 6 PM on weekdays in a single time zone.

Which of the following options are the MOST effective in solving the issue while keeping costs to a minimum? (Choose two.)

A.

Configure the endpoint to use Amazon Elastic Inference (EI) accelerators.

B.

Create a new endpoint configuration with two production variants.

C.

Configure the endpoint to automatically scale with the Invocations Per Instance metric.

D.

Deploy a second instance pool to support a blue/green deployment of models.

E.

Reconfigure the endpoint to use burstable instances.

A company sells thousands of products on a public website and wants to automatically identify products with potential durability problems. The company has 1.000 reviews with date, star rating, review text, review summary, and customer email fields, but many reviews are incomplete and have empty fields. Each review has already been labeled with the correct durability result.

A machine learning specialist must train a model to identify reviews expressing concerns over product durability. The first model needs to be trained and ready to review in 2 days.

What is the MOST direct approach to solve this problem within 2 days?

A.

Train a custom classifier by using Amazon Comprehend.

B.

Build a recurrent neural network (RNN) in Amazon SageMaker by using Gluon and Apache MXNet.

C.

Train a built-in BlazingText model using Word2Vec mode in Amazon SageMaker.

D.

Use a built-in seq2seq model in Amazon SageMaker.

IT leadership wants Jo transition a company's existing machine learning data storage environment to AWS as a temporary ad hoc solution The company currently uses a custom software process that heavily leverages SOL as a query language and exclusively stores generated csv documents for machine learning

The ideal state for the company would be a solution that allows it to continue to use the current workforce of SQL experts The solution must also support the storage of csv and JSON files, and be able to query over semi-structured data The following are high priorities for the company:

• Solution simplicity

• Fast development time

• Low cost

• High flexibility

What technologies meet the company's requirements?

A.

Amazon S3 and Amazon Athena

B.

Amazon Redshift and AWS Glue

C.

Amazon DynamoDB and DynamoDB Accelerator (DAX)

D.

Amazon RDS and Amazon ES

A data scientist must build a custom recommendation model in Amazon SageMaker for an online retail company. Due to the nature of the company's products, customers buy only 4-5 products every 5-10 years. So, the company relies on a steady stream of new customers. When a new customer signs up, the company collects data on the customer's preferences. Below is a sample of the data available to the data scientist.

How should the data scientist split the dataset into a training and test set for this use case?

A.

Shuffle all interaction data. Split off the last 10% of the interaction data for the test set.

B.

Identify the most recent 10% of interactions for each user. Split off these interactions for the test set.

C.

Identify the 10% of users with the least interaction data. Split off all interaction data from these users for the test set.

D.

Randomly select 10% of the users. Split off all interaction data from these users for the test set.

A Data Scientist needs to create a serverless ingestion and analytics solution for high-velocity, real-time streaming data.

The ingestion process must buffer and convert incoming records from JSON to a query-optimized, columnar format without data loss. The output datastore must be highly available, and Analysts must be able to run SQL queries against the data and connect to existing business intelligence dashboards.

Which solution should the Data Scientist build to satisfy the requirements?

A.

Create a schema in the AWS Glue Data Catalog of the incoming data format. Use an Amazon Kinesis Data Firehose delivery stream to stream the data and transform the data to Apache Parquet or ORC format using the AWS Glue Data Catalog before delivering to Amazon S3. Have the Analysts query the data directly from Amazon S3 using Amazon Athena, and connect to Bl tools using the Athena Java Database Connectivity (JDBC) connector.

B.

Write each JSON record to a staging location in Amazon S3. Use the S3 Put event to trigger an AWS Lambda function that transforms the data into Apache Parquet or ORC format and writes the data to a processed data location in Amazon S3. Have the Analysts query the data directly from Amazon S3 using Amazon Athena, and connect to Bl tools using the Athena Java Database Connectivity (JDBC) connector.

C.

Write each JSON record to a staging location in Amazon S3. Use the S3 Put event to trigger an AWS Lambda function that transforms the data into Apache Parquet or ORC format and inserts it into an Amazon RDS PostgreSQL database. Have the Analysts query and run dashboards from the RDS database.

D.

Use Amazon Kinesis Data Analytics to ingest the streaming data and perform real-time SQL queries to convert the records to Apache Parquet before delivering to Amazon S3. Have the Analysts query the data directly from Amazon S3 using Amazon Athena and connect to Bl tools using the Athena Java Database Connectivity (JDBC) connector.

A Machine Learning Specialist is working with a large company to leverage machine learning within its products. The company wants to group its customers into categories based on which customers will and will not churn within the next 6 months. The company has labeled the data available to the Specialist.

Which machine learning model type should the Specialist use to accomplish this task?

A.

Linear regression

B.

Classification

C.

Clustering

D.

Reinforcement learning

Acybersecurity company is collecting on-premises server logs, mobile app logs, and loT sensor data. The company backs up the ingested data in an Amazon S3 bucket and sends the ingested data to Amazon OpenSearch Service for further analysis. Currently, the company has a custom ingestion pipeline that is running on Amazon EC2 instances. The company needs to implement a new serverless ingestion pipeline that can automatically scale to handle sudden changes in the data flow.

Which solution will meet these requirements MOST cost-effectively?

A.

Create two Amazon Data Firehose delivery streams to send data to the S3 bucket and OpenSearch Service. Configure the data sources to send data to the delivery streams.

B.

Create one Amazon Kinesis data stream. Create two Amazon Data Firehose delivery streams to send data to the S3 bucket and OpenSearch Service. Connect the delivery streams to the data stream. Configure the data sources to send data to the data stream.

C.

Create one Amazon Data Firehose delivery stream to send data to OpenSearch Service. Configure the delivery stream to back up the raw data to the S3 bucket. Configure the data sources to send data to the delivery stream.

D.

Create one Amazon Kinesis data stream. Create one Amazon Data Firehose delivery stream to send data to OpenSearch Service. Configure the delivery stream to back up the data to the S3 bucket. Connect the delivery stream to the data stream. Configure the data sources to send data to the data stream.

A Machine Learning Specialist is designing a scalable data storage solution for Amazon SageMaker. There is an existing TensorFlow-based model implemented as a train.py script that relies on static training data that is currently stored as TFRecords.

Which method of providing training data to Amazon SageMaker would meet the business requirements with the LEAST development overhead?

A.

Use Amazon SageMaker script mode and use train.py unchanged. Point the Amazon SageMaker training invocation to the local path of the data without reformatting the training data.

B.

Use Amazon SageMaker script mode and use train.py unchanged. Put the TFRecord data into an Amazon S3 bucket. Point the Amazon SageMaker training invocation to the S3 bucket without reformatting the training data.

C.

Rewrite the train.py script to add a section that converts TFRecords to protobuf and ingests the protobuf data instead of TFRecords.

D.

Prepare the data in the format accepted by Amazon SageMaker. Use AWS Glue or AWS Lambda to reformat and store the data in an Amazon S3 bucket.

A manufacturing company has structured and unstructured data stored in an Amazon S3 bucket. A Machine Learning Specialist wants to use SQL to run queries on this data.

Which solution requires the LEAST effort to be able to query this data?

A.

Use AWS Data Pipeline to transform the data and Amazon RDS to run queries.

B.

Use AWS Glue to catalogue the data and Amazon Athena to run queries.

C.

Use AWS Batch to run ETL on the data and Amazon Aurora to run the queries.

D.

Use AWS Lambda to transform the data and Amazon Kinesis Data Analytics to run queries.

An insurance company is creating an application to automate car insurance claims. A machine learning (ML) specialist used an Amazon SageMaker Object Detection - TensorFlow built-in algorithm to train a model to detect scratches and dents in images of cars. After the model was trained, the ML specialist noticed that the model performed better on the training dataset than on the testing dataset.

Which approach should the ML specialist use to improve the performance of the model on the testing data?

A.

Increase the value of the momentum hyperparameter.

B.

Reduce the value of the dropout_rate hyperparameter.

C.

Reduce the value of the learning_rate hyperparameter.

D.

Increase the value of the L2 hyperparameter.