Amazon Web Services MLS-C01 - AWS Certified Machine Learning - Specialty
A company has an ecommerce website with a product recommendation engine built in TensorFlow. The recommendation engine endpoint is hosted by Amazon SageMaker. Three compute-optimized instances support the expected peak load of the website.
Response times on the product recommendation page are increasing at the beginning of each month. Some users are encountering errors. The website receives the majority of its traffic between 8 AM and 6 PM on weekdays in a single time zone.
Which of the following options are the MOST effective in solving the issue while keeping costs to a minimum? (Choose two.)
A company sells thousands of products on a public website and wants to automatically identify products with potential durability problems. The company has 1.000 reviews with date, star rating, review text, review summary, and customer email fields, but many reviews are incomplete and have empty fields. Each review has already been labeled with the correct durability result.
A machine learning specialist must train a model to identify reviews expressing concerns over product durability. The first model needs to be trained and ready to review in 2 days.
What is the MOST direct approach to solve this problem within 2 days?
IT leadership wants Jo transition a company's existing machine learning data storage environment to AWS as a temporary ad hoc solution The company currently uses a custom software process that heavily leverages SOL as a query language and exclusively stores generated csv documents for machine learning
The ideal state for the company would be a solution that allows it to continue to use the current workforce of SQL experts The solution must also support the storage of csv and JSON files, and be able to query over semi-structured data The following are high priorities for the company:
• Solution simplicity
• Fast development time
• Low cost
• High flexibility
What technologies meet the company's requirements?
A data scientist must build a custom recommendation model in Amazon SageMaker for an online retail company. Due to the nature of the company's products, customers buy only 4-5 products every 5-10 years. So, the company relies on a steady stream of new customers. When a new customer signs up, the company collects data on the customer's preferences. Below is a sample of the data available to the data scientist.
How should the data scientist split the dataset into a training and test set for this use case?
A Data Scientist needs to create a serverless ingestion and analytics solution for high-velocity, real-time streaming data.
The ingestion process must buffer and convert incoming records from JSON to a query-optimized, columnar format without data loss. The output datastore must be highly available, and Analysts must be able to run SQL queries against the data and connect to existing business intelligence dashboards.
Which solution should the Data Scientist build to satisfy the requirements?
A Machine Learning Specialist is working with a large company to leverage machine learning within its products. The company wants to group its customers into categories based on which customers will and will not churn within the next 6 months. The company has labeled the data available to the Specialist.
Which machine learning model type should the Specialist use to accomplish this task?
Acybersecurity company is collecting on-premises server logs, mobile app logs, and loT sensor data. The company backs up the ingested data in an Amazon S3 bucket and sends the ingested data to Amazon OpenSearch Service for further analysis. Currently, the company has a custom ingestion pipeline that is running on Amazon EC2 instances. The company needs to implement a new serverless ingestion pipeline that can automatically scale to handle sudden changes in the data flow.
Which solution will meet these requirements MOST cost-effectively?
A Machine Learning Specialist is designing a scalable data storage solution for Amazon SageMaker. There is an existing TensorFlow-based model implemented as a train.py script that relies on static training data that is currently stored as TFRecords.
Which method of providing training data to Amazon SageMaker would meet the business requirements with the LEAST development overhead?
A manufacturing company has structured and unstructured data stored in an Amazon S3 bucket. A Machine Learning Specialist wants to use SQL to run queries on this data.
Which solution requires the LEAST effort to be able to query this data?
An insurance company is creating an application to automate car insurance claims. A machine learning (ML) specialist used an Amazon SageMaker Object Detection - TensorFlow built-in algorithm to train a model to detect scratches and dents in images of cars. After the model was trained, the ML specialist noticed that the model performed better on the training dataset than on the testing dataset.
Which approach should the ML specialist use to improve the performance of the model on the testing data?