Weekend Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmas50

Amazon Web Services MLS-C01 - AWS Certified Machine Learning - Specialty

Page: 5 / 10
Total 330 questions

A Marketing Manager at a pet insurance company plans to launch a targeted marketing campaign on social media to acquire new customers Currently, the company has the following data in Amazon Aurora

• Profiles for all past and existing customers

• Profiles for all past and existing insured pets

• Policy-level information

• Premiums received

• Claims paid

What steps should be taken to implement a machine learning model to identify potential new customers on social media?

A.

Use regression on customer profile data to understand key characteristics of consumer segments Find similar profiles on social media.

B.

Use clustering on customer profile data to understand key characteristics of consumer segments Find similar profiles on social media.

C.

Use a recommendation engine on customer profile data to understand key characteristics of consumer segments. Find similar profiles on social media

D.

Use a decision tree classifier engine on customer profile data to understand key characteristics of consumer segments. Find similar profiles on social media

A bank's Machine Learning team is developing an approach for credit card fraud detection The company has a large dataset of historical data labeled as fraudulent The goal is to build a model to take the information from new transactions and predict whether each transaction is fraudulent or not

Which built-in Amazon SageMaker machine learning algorithm should be used for modeling this problem?

A.

Seq2seq

B.

XGBoost

C.

K-means

D.

Random Cut Forest (RCF)

A Machine Learning Specialist is packaging a custom ResNet model into a Docker container so the company can leverage Amazon SageMaker for training The Specialist is using Amazon EC2 P3 instances to train the model and needs to properly configure the Docker container to leverage the NVIDIA GPUs

What does the Specialist need to do1?

A.

Bundle the NVIDIA drivers with the Docker image

B.

Build the Docker container to be NVIDIA-Docker compatible

C.

Organize the Docker container's file structure to execute on GPU instances.

D.

Set the GPU flag in the Amazon SageMaker Create TrainingJob request body

Each morning, a data scientist at a rental car company creates insights about the previous day’s rental car reservation demands. The company needs to automate this process by streaming the data to Amazon S3 in near real time. The solution must detect high-demand rental cars at each of the company’s locations. The solution also must create a visualization dashboard that automatically refreshes with the most recent data.

Which solution will meet these requirements with the LEAST development time?

A.

Use Amazon Kinesis Data Firehose to stream the reservation data directly to Amazon S3. Detect high-demand outliers by using Amazon QuickSight ML Insights. Visualize the data in QuickSight.

B.

Use Amazon Kinesis Data Streams to stream the reservation data directly to Amazon S3. Detect high-demand outliers by using the Random Cut Forest (RCF) trained model in Amazon SageMaker. Visualize the data in Amazon QuickSight.

C.

Use Amazon Kinesis Data Firehose to stream the reservation data directly to Amazon S3. Detect high-demand outliers by using the Random Cut Forest (RCF) trained model in Amazon SageMaker. Visualize the data in Amazon QuickSight.

D.

Use Amazon Kinesis Data Streams to stream the reservation data directly to Amazon S3. Detect high-demand outliers by using Amazon QuickSight ML Insights. Visualize the data in QuickSight.

A company deployed a machine learning (ML) model on the company website to predict real estate prices. Several months after deployment, an ML engineer notices that the accuracy of the model has gradually decreased.

The ML engineer needs to improve the accuracy of the model. The engineer also needs to receive notifications for any future performance issues.

Which solution will meet these requirements?

A.

Perform incremental training to update the model. Activate Amazon SageMaker Model Monitor to detect model performance issues and to send notifications.

B.

Use Amazon SageMaker Model Governance. Configure Model Governance to automatically adjust model hyper para meters. Create a performance threshold alarm in Amazon CloudWatch to send notifications.

C.

Use Amazon SageMaker Debugger with appropriate thresholds. Configure Debugger to send Amazon CloudWatch alarms to alert the team Retrain the model by using only data from the previous several months.

D.

Use only data from the previous several months to perform incremental training to update the model. Use Amazon SageMaker Model Monitor to detect model performance issues and to send notifications.

A Machine Learning Specialist is implementing a full Bayesian network on a dataset that describes public transit in New York City. One of the random variables is discrete, and represents the number of minutes New Yorkers wait for a bus given that the buses cycle every 10 minutes, with a mean of 3 minutes.

Which prior probability distribution should the ML Specialist use for this variable?

A.

Poisson distribution ,

B.

Uniform distribution

C.

Normal distribution

D.

Binomial distribution

A data scientist has developed a machine learning translation model for English to Japanese by using Amazon SageMaker's built-in seq2seq algorithm with 500,000 aligned sentence pairs. While testing with sample sentences, the data scientist finds that the translation quality is reasonable for an example as short as five words. However, the quality becomes unacceptable if the sentence is 100 words long.

Which action will resolve the problem?

A.

Change preprocessing to use n-grams.

B.

Add more nodes to the recurrent neural network (RNN) than the largest sentence's word count.

C.

Adjust hyperparameters related to the attention mechanism.

D.

Choose a different weight initialization type.

A beauty supply store wants to understand some characteristics of visitors to the store. The store has security video recordings from the past several years. The store wants to generate a report of hourly visitors from the recordings. The report should group visitors by hair style and hair color.

Which solution will meet these requirements with the LEAST amount of effort?

A.

Use an object detection algorithm to identify a visitor’s hair in video frames. Pass the identified hair to an ResNet-50 algorithm to determine hair style and hair color.

B.

Use an object detection algorithm to identify a visitor’s hair in video frames. Pass the identified hair to an XGBoost algorithm to determine hair style and hair color.

C.

Use a semantic segmentation algorithm to identify a visitor’s hair in video frames. Pass the identified hair to an ResNet-50 algorithm to determine hair style and hair color.

D.

Use a semantic segmentation algorithm to identify a visitor’s hair in video frames. Pass the identified hair to an XGBoost algorithm to determine hair style and hair.

A Machine Learning Specialist is creating a new natural language processing application that processes a dataset comprised of 1 million sentences The aim is to then run Word2Vec to generate embeddings of the sentences and enable different types of predictions -

Here is an example from the dataset

"The quck BROWN FOX jumps over the lazy dog "

Which of the following are the operations the Specialist needs to perform to correctly sanitize and prepare the data in a repeatable manner? (Select THREE)

A.

Perform part-of-speech tagging and keep the action verb and the nouns only

B.

Normalize all words by making the sentence lowercase

C.

Remove stop words using an English stopword dictionary.

D.

Correct the typography on "quck" to "quick."

E.

One-hot encode all words in the sentence

F.

Tokenize the sentence into words.

A Data Engineer needs to build a model using a dataset containing customer credit card information.

How can the Data Engineer ensure the data remains encrypted and the credit card information is secure?

A.

Use a custom encryption algorithm to encrypt the data and store the data on an Amazon SageMakerinstance in a VPC. Use the SageMaker DeepAR algorithm to randomize the credit card numbers.

B.

Use an IAM policy to encrypt the data on the Amazon S3 bucket and Amazon Kinesis to automaticallydiscard credit card numbers and insert fake credit card numbers.

C.

Use an Amazon SageMaker launch configuration to encrypt the data once it is copied to the SageMakerinstance in a VPC. Use the SageMaker principal component analysis (PCA) algorithm to reduce the lengthof the credit card numbers.

D.

Use AWS KMS to encrypt the data on Amazon S3 and Amazon SageMaker, and redact the credit card numbers from the customer data with AWS Glue.