Summer Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ecus65

Amazon Web Services MLS-C01 - AWS Certified Machine Learning - Specialty

Page: 7 / 10
Total 330 questions

A city wants to monitor its air quality to address the consequences of air pollution A Machine Learning Specialist needs to forecast the air quality in parts per million of contaminates for the next 2 days in the city as this is a prototype, only daily data from the last year is available

Which model is MOST likely to provide the best results in Amazon SageMaker?

A.

Use the Amazon SageMaker k-Nearest-Neighbors (kNN) algorithm on the single time series consisting ofthe full year of data with a predictor_type of regressor.

B.

Use Amazon SageMaker Random Cut Forest (RCF) on the single time series consisting of the full year ofdata.

C.

Use the Amazon SageMaker Linear Learner algorithm on the single time series consisting of the full yearof data with a predictor_type of regressor.

D.

Use the Amazon SageMaker Linear Learner algorithm on the single time series consisting of the full yearof data with a predictor_type of classifier.

A car company is developing a machine learning solution to detect whether a car is present in an image. The image dataset consists of one million images. Each image in the dataset is 200 pixels in height by 200 pixels in width. Each image is labeled as either having a car or not having a car.

Which architecture is MOST likely to produce a model that detects whether a car is present in an image with the highest accuracy?

A.

Use a deep convolutional neural network (CNN) classifier with the images as input. Include a linear output layer that outputs the probability that an image contains a car.

B.

Use a deep convolutional neural network (CNN) classifier with the images as input. Include a softmax output layer that outputs the probability that an image contains a car.

C.

Use a deep multilayer perceptron (MLP) classifier with the images as input. Include a linear output layer that outputs the probability that an image contains a car.

D.

Use a deep multilayer perceptron (MLP) classifier with the images as input. Include a softmax output layer that outputs the probability that an image contains a car.

A Data Scientist is developing a binary classifier to predict whether a patient has a particular disease on a series of test results. The Data Scientist has data on 400 patients randomly selected from the population. The disease is seen in 3% of the population.

Which cross-validation strategy should the Data Scientist adopt?

A.

A k-fold cross-validation strategy with k=5

B.

A stratified k-fold cross-validation strategy with k=5

C.

A k-fold cross-validation strategy with k=5 and 3 repeats

D.

An 80/20 stratified split between training and validation

A media company is building a computer vision model to analyze images that are on social media. The model consists of CNNs that the company trained by using images that the company stores in Amazon S3. The company used an Amazon SageMaker training job in File mode with a single Amazon EC2 On-Demand Instance.

Every day, the company updates the model by using about 10,000 images that the company has collected in the last 24 hours. The company configures training with only one epoch. The company wants to speed up training and lower costs without the need to make any code changes.

Which solution will meet these requirements?

A.

Instead of File mode, configure the SageMaker training job to use Pipe mode. Ingest the data from a pipe.

B.

Instead Of File mode, configure the SageMaker training job to use FastFile mode with no Other changes.

C.

Instead Of On-Demand Instances, configure the SageMaker training job to use Spot Instances. Make no Other changes.

D.

Instead Of On-Demand Instances, configure the SageMaker training job to use Spot Instances. Implement model checkpoints.

A Data Scientist received a set of insurance records, each consisting of a record ID, the final outcome among 200 categories, and the date of the final outcome. Some partial information on claim contents is also provided, but only for a few of the 200 categories. For each outcome category, there are hundreds of records distributed over the past 3 years. The Data Scientist wants to predict how many claims to expect in each category from month to month, a few months in advance.

What type of machine learning model should be used?

A.

Classification month-to-month using supervised learning of the 200 categories based on claim contents.

B.

Reinforcement learning using claim IDs and timestamps where the agent will identify how many claims in each category to expect from month to month.

C.

Forecasting using claim IDs and timestamps to identify how many claims in each category to expect from month to month.

D.

Classification with supervised learning of the categories for which partial information on claim contents is provided, and forecasting using claim IDs and timestamps for all other categories.

An online delivery company wants to choose the fastest courier for each delivery at the moment an order is placed. The company wants to implement this feature for existing users and new users of its application. Data scientists have trained separate models with XGBoost for this purpose, and the models are stored in Amazon S3. There is one model fof each city where the company operates.

The engineers are hosting these models in Amazon EC2 for responding to the web client requests, with one instance for each model, but the instances have only a 5% utilization in CPU and memory, ....operation engineers want to avoid managing unnecessary resources.

Which solution will enable the company to achieve its goal with the LEAST operational overhead?

A.

Create an Amazon SageMaker notebook instance for pulling all the models from Amazon S3 using the boto3 library. Remove the existing instances and use the notebook to perform a SageMaker batch transform for performing inferences offline for all the possible users in all the cities. Store the results in different files in Amazon S3. Point the web client to the files.

B.

Prepare an Amazon SageMaker Docker container based on the open-source multi-model server. Remove the existing instances and create a multi-model endpoint in SageMaker instead, pointing to the S3 bucket containing all the models Invoke the endpoint from the web client at runtime, specifying the TargetModel parameter according to the city of each request.

C.

Keep only a single EC2 instance for hosting all the models. Install a model server in the instance and load each model by pulling it from Amazon S3. Integrate the instance with the web client using Amazon API Gateway for responding to the requests in real time, specifying the target resource according to the city of each request.

D.

Prepare a Docker container based on the prebuilt images in Amazon SageMaker. Replace the existing instances with separate SageMaker endpoints. one for each city where the company operates. Invoke the endpoints from the web client, specifying the URL and EndpomtName parameter according to the city of each request.

A Machine Learning Specialist is configuring automatic model tuning in Amazon SageMaker

When using the hyperparameter optimization feature, which of the following guidelines should be followed to improve optimization?

Choose the maximum number of hyperparameters supported by

A.

Amazon SageMaker to search the largest number of combinations possible

B.

Specify a very large hyperparameter range to allow Amazon SageMaker to cover every possible value.

C.

Use log-scaled hyperparameters to allow the hyperparameter space to be searched as quickly as possible

D.

Execute only one hyperparameter tuning job at a time and improve tuning through successive rounds of experiments

A manufacturing company wants to use machine learning (ML) to automate quality control in its facilities. The facilities are in remote locations and have limited internet connectivity. The company has 20 ТВ of training data that consists of labeled images of defective product parts. The training data is in the corporate on-premises data center.

The company will use this data to train a model for real-time defect detection in new parts as the parts move on a conveyor belt in the facilities. The company needs a solution that minimizes costs for compute infrastructure and that maximizes the scalability of resources for training. The solution also must facilitate the company’s use of an ML model in the low-connectivity environments.

Which solution will meet these requirements?

A.

Move the training data to an Amazon S3 bucket. Train and evaluate the model by using Amazon SageMaker. Optimize the model by using SageMaker Neo. Deploy the model on a SageMaker hosting services endpoint.

B.

Train and evaluate the model on premises. Upload the model to an Amazon S3 bucket. Deploy the model on an Amazon SageMaker hosting services endpoint.

C.

Move the training data to an Amazon S3 bucket. Train and evaluate the model by using Amazon SageMaker. Optimize the model by using SageMaker Neo. Set up an edge device in the manufacturing facilities with AWS IoT Greengrass. Deploy the model on the edge device.

D.

Train the model on premises. Upload the model to an Amazon S3 bucket. Set up an edge device in the manufacturing facilities with AWS IoT Greengrass. Deploy the model on the edge device.

A sports analytics company is providing services at a marathon. Each runner in the marathon will have their race ID printed as text on the front of their shirt. The company needs to extract race IDs from images of the runners.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon Rekognition.

B.

Use a custom convolutional neural network (CNN).

C.

Use the Amazon SageMaker Object Detection algorithm.

D.

Use Amazon Lookout for Vision.

A Machine Learning Specialist is configuring Amazon SageMaker so multiple Data Scientists can access notebooks, train models, and deploy endpoints. To ensure the best operational performance, the Specialist needs to be able to track how often the Scientists are deploying models, GPU and CPU utilization on the deployed SageMaker endpoints, and all errors that are generated when an endpoint is invoked.

Which services are integrated with Amazon SageMaker to track this information? (Select TWO.)

A.

AWS CloudTrail

B.

AWS Health

C.

AWS Trusted Advisor

D.

Amazon CloudWatch

E.

AWS Config