Winter Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ecus65

Amazon Web Services Data-Engineer-Associate - AWS Certified Data Engineer - Associate (DEA-C01)

A company maintains multiple extract, transform, and load (ETL) workflows that ingest data from the company's operational databases into an Amazon S3 based data lake. The ETL workflows use AWS Glue and Amazon EMR to process data.

The company wants to improve the existing architecture to provide automated orchestration and to require minimal manual effort.

Which solution will meet these requirements with the LEAST operational overhead?

A.

AWS Glue workflows

B.

AWS Step Functions tasks

C.

AWS Lambda functions

D.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA) workflows

A company processes 500 GB of audience and advertising data daily, storing CSV files in Amazon S3 with schemas registered in AWS Glue Data Catalog. They need to convert these files to Apache Parquet format and store them in an S3 bucket.

The solution requires a long-running workflow with 15 GiB memory capacity to process the data concurrently, followed by a correlation process that begins only after the first two processes complete.

A.

Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to orchestrate the workflow by using AWS Glue. Configure AWS Glue to begin the third process after the first two processes have finished.

B.

Use Amazon EMR to run each process in the workflow. Create an Amazon Simple Queue Service (Amazon SQS) queue to handle messages that indicate the completion of the first two processes. Configure an AWS Lambda function to process the SQS queue by running the third process.

C.

Use AWS Glue workflows to run the first two processes in parallel. Ensure that the third process starts after the first two processes have finished.

D.

Use AWS Step Functions to orchestrate a workflow that uses multiple AWS Lambda functions. Ensure that the third process starts after the first two processes have finished.

A company saves customer data to an Amazon S3 bucket. The company uses server-side encryption with AWS KMS keys (SSE-KMS) to encrypt the bucket. The dataset includes personally identifiable information (PII) such as social security numbers and account details.

Data that is tagged as PII must be masked before the company uses customer data for analysis. Some users must have secure access to the PII data during the preprocessing phase. The company needs a low-maintenance solution to mask and secure the PII data throughout the entire engineering pipeline.

Which combination of solutions will meet these requirements? (Select TWO.)

A.

Use AWS Glue DataBrew to perform extract, transform, and load (ETL) tasks that mask the PII data before analysis.

B.

Use Amazon GuardDuty to monitor access patterns for the PII data that is used in the engineering pipeline.

C.

Configure an Amazon Made discovery job for the S3 bucket.

D.

Use AWS Identity and Access Management (IAM) to manage permissions and to control access to the PII data.

E.

Write custom scripts in an application to mask the PII data and to control access.

A data engineer is implementing model governance for machine learning (ML) workflows on AWS. The data engineer needs a solution that can track the complete lifecycle of the ML models, including data preparation, model training, and deployment stages. The solution must ensure reproducibility and audit compliance.

A.

Use Amazon SageMaker Debugger to capture metrics. Create associations between datasets and training jobs by monitoring training jobs.

B.

Use Amazon SageMaker ML Lineage Tracking to create associations between artifacts, training jobs, and datasets by recording metadata.

C.

Use Amazon SageMaker Model Monitor to create associations between artifacts and training jobs by tracking model performance.

D.

Use Amazon SageMaker Experiments to create associations between datasets and artifacts by tracking hyperparameters and metrics.

A data engineer is configuring an AWS Glue job to read data from an Amazon S3 bucket. The data engineer has set up the necessary AWS Glue connection details and an associated IAM role. However, when the data engineer attempts to run the AWS Glue job, the data engineer receives an error message that indicates that there are problems with the Amazon S3 VPC gateway endpoint.

The data engineer must resolve the error and connect the AWS Glue job to the S3 bucket.

Which solution will meet this requirement?

A.

Update the AWS Glue security group to allow inbound traffic from the Amazon S3 VPC gateway endpoint.

B.

Configure an S3 bucket policy to explicitly grant the AWS Glue job permissions to access the S3 bucket.

C.

Review the AWS Glue job code to ensure that the AWS Glue connection details include a fully qualified domain name.

D.

Verify that the VPC's route table includes inbound and outbound routes for the Amazon S3 VPC gateway endpoint.

A data engineer is configuring an AWS Glue Apache Spark extract, transform, and load (ETL) job. The job contains a sort-merge join of two large and equally sized DataFrames.

The job is failing with the following error: No space left on device.

Which solution will resolve the error?

A.

Use the AWS Glue Spark shuffle manager.

B.

Deploy an Amazon Elastic Block Store (Amazon EBS) volume for the job to use.

C.

Convert the sort-merge join in the job to be a broadcast join.

D.

Convert the DataFrames to DynamicFrames, and perform a DynamicFrame join in the job.

A company has an application that uses a microservice architecture. The company hosts the application on an Amazon Elastic Kubernetes Services (Amazon EKS) cluster.

The company wants to set up a robust monitoring system for the application. The company needs to analyze the logs from the EKS cluster and the application. The company needs to correlate the cluster's logs with the application's traces to identify points of failure in the whole application request flow.

Which combination of steps will meet these requirements with the LEAST development effort? (Select TWO.)

A.

Use FluentBit to collect logs. Use OpenTelemetry to collect traces.

B.

Use Amazon CloudWatch to collect logs. Use Amazon Kinesis to collect traces.

C.

Use Amazon CloudWatch to collect logs. Use Amazon Managed Streaming for Apache Kafka (Amazon MSK) to collect traces.

D.

Use Amazon OpenSearch to correlate the logs and traces.

E.

Use AWS Glue to correlate the logs and traces.

A banking company uses an application to collect large volumes of transactional data. The company uses Amazon Kinesis Data Streams for real-time analytics. The company's application uses the PutRecord action to send data to Kinesis Data Streams.

A data engineer has observed network outages during certain times of day. The data engineer wants to configure exactly-once delivery for the entire processing pipeline.

Which solution will meet this requirement?

A.

Design the application so it can remove duplicates during processing by embedding a unique ID in each record at the source.

B.

Update the checkpoint configuration of the Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) data collection application to avoid duplicate processing of events.

C.

Design the data source so events are not ingested into Kinesis Data Streams multiple times.

D.

Stop using Kinesis Data Streams. Use Amazon EMR instead. Use Apache Flink and Apache Spark Streaming in Amazon EMR.

A data engineer has a one-time task to read data from objects that are in Apache Parquet format in an Amazon S3 bucket. The data engineer needs to query only one column of the data.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Confiqure an AWS Lambda function to load data from the S3 bucket into a pandas dataframe- Write a SQL SELECT statement on the dataframe to query the required column.

B.

Use S3 Select to write a SQL SELECT statement to retrieve the required column from the S3 objects.

C.

Prepare an AWS Glue DataBrew project to consume the S3 objects and to query the required column.

D.

Run an AWS Glue crawler on the S3 objects. Use a SQL SELECT statement in Amazon Athena to query the required column.

A company currently uses a provisioned Amazon EMR cluster that includes general purpose Amazon EC2 instances. The EMR cluster uses EMR managed scaling between one to five task nodes for the company's long-running Apache Spark extract, transform, and load (ETL) job. The company runs the ETL job every day.

When the company runs the ETL job, the EMR cluster quickly scales up to five nodes. The EMR cluster often reaches maximum CPU usage, but the memory usage remains under 30%.

The company wants to modify the EMR cluster configuration to reduce the EMR costs to run the daily ETL job.

Which solution will meet these requirements MOST cost-effectively?

A.

Increase the maximum number of task nodes for EMR managed scaling to 10.

B.

Change the task node type from general purpose EC2 instances to memory optimized EC2 instances.

C.

Switch the task node type from general purpose EC2 instances to compute optimized EC2 instances.

D.

Reduce the scaling cooldown period for the provisioned EMR cluster.