Amazon Web Services Data-Engineer-Associate - AWS Certified Data Engineer - Associate (DEA-C01)
Total 231 questions
A company maintains multiple extract, transform, and load (ETL) workflows that ingest data from the company's operational databases into an Amazon S3 based data lake. The ETL workflows use AWS Glue and Amazon EMR to process data.
The company wants to improve the existing architecture to provide automated orchestration and to require minimal manual effort.
Which solution will meet these requirements with the LEAST operational overhead?
A company processes 500 GB of audience and advertising data daily, storing CSV files in Amazon S3 with schemas registered in AWS Glue Data Catalog. They need to convert these files to Apache Parquet format and store them in an S3 bucket.
The solution requires a long-running workflow with 15 GiB memory capacity to process the data concurrently, followed by a correlation process that begins only after the first two processes complete.
A company saves customer data to an Amazon S3 bucket. The company uses server-side encryption with AWS KMS keys (SSE-KMS) to encrypt the bucket. The dataset includes personally identifiable information (PII) such as social security numbers and account details.
Data that is tagged as PII must be masked before the company uses customer data for analysis. Some users must have secure access to the PII data during the preprocessing phase. The company needs a low-maintenance solution to mask and secure the PII data throughout the entire engineering pipeline.
Which combination of solutions will meet these requirements? (Select TWO.)
A data engineer is implementing model governance for machine learning (ML) workflows on AWS. The data engineer needs a solution that can track the complete lifecycle of the ML models, including data preparation, model training, and deployment stages. The solution must ensure reproducibility and audit compliance.
A data engineer is configuring an AWS Glue job to read data from an Amazon S3 bucket. The data engineer has set up the necessary AWS Glue connection details and an associated IAM role. However, when the data engineer attempts to run the AWS Glue job, the data engineer receives an error message that indicates that there are problems with the Amazon S3 VPC gateway endpoint.
The data engineer must resolve the error and connect the AWS Glue job to the S3 bucket.
Which solution will meet this requirement?
A data engineer is configuring an AWS Glue Apache Spark extract, transform, and load (ETL) job. The job contains a sort-merge join of two large and equally sized DataFrames.
The job is failing with the following error: No space left on device.
Which solution will resolve the error?
A company has an application that uses a microservice architecture. The company hosts the application on an Amazon Elastic Kubernetes Services (Amazon EKS) cluster.
The company wants to set up a robust monitoring system for the application. The company needs to analyze the logs from the EKS cluster and the application. The company needs to correlate the cluster's logs with the application's traces to identify points of failure in the whole application request flow.
Which combination of steps will meet these requirements with the LEAST development effort? (Select TWO.)
A banking company uses an application to collect large volumes of transactional data. The company uses Amazon Kinesis Data Streams for real-time analytics. The company's application uses the PutRecord action to send data to Kinesis Data Streams.
A data engineer has observed network outages during certain times of day. The data engineer wants to configure exactly-once delivery for the entire processing pipeline.
Which solution will meet this requirement?
A data engineer has a one-time task to read data from objects that are in Apache Parquet format in an Amazon S3 bucket. The data engineer needs to query only one column of the data.
Which solution will meet these requirements with the LEAST operational overhead?
A company currently uses a provisioned Amazon EMR cluster that includes general purpose Amazon EC2 instances. The EMR cluster uses EMR managed scaling between one to five task nodes for the company's long-running Apache Spark extract, transform, and load (ETL) job. The company runs the ETL job every day.
When the company runs the ETL job, the EMR cluster quickly scales up to five nodes. The EMR cluster often reaches maximum CPU usage, but the memory usage remains under 30%.
The company wants to modify the EMR cluster configuration to reduce the EMR costs to run the daily ETL job.
Which solution will meet these requirements MOST cost-effectively?
