Winter Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ecus65

Amazon Web Services Data-Engineer-Associate - AWS Certified Data Engineer - Associate (DEA-C01)

A data engineer is designing a log table for an application that requires continuous ingestion. The application must provide dependable API-based access to specific records from other applications. The application must handle more than 4,000 concurrent write operations and 6,500 read operations every second.

A.

Create an Amazon Redshift table with the KEY distribution style. Use the Amazon Redshift Data API to perform all read and write operations.

B.

Store the log files in an Amazon S3 Standard bucket. Register the schema in AWS Glue Data Catalog. Create an external Redshift table that points to the AWS Glue schema. Use the table to perform Amazon Redshift Spectrum read operations.

C.

Create an Amazon Redshift table with the EVEN distribution style. Use the Amazon Redshift JDBC connector to establish a database connection. Use the database connection to perform all read and write operations.

D.

Create an Amazon DynamoDB table that has provisioned capacity to meet the application's capacity needs. Use the DynamoDB table to perform all read and write operations by using DynamoDB APIs.

Files from multiple data sources arrive in an Amazon S3 bucket on a regular basis. A data engineer wants to ingest new files into Amazon Redshift in near real time when the new files arrive in the S3 bucket.

Which solution will meet these requirements?

A.

Use the query editor v2 to schedule a COPY command to load new files into Amazon Redshift.

B.

Use the zero-ETL integration between Amazon Aurora and Amazon Redshift to load new files into Amazon Redshift.

C.

Use AWS Glue job bookmarks to extract, transform, and load (ETL) load new files into Amazon Redshift.

D.

Use S3 Event Notifications to invoke an AWS Lambda function that loads new files into Amazon Redshift.

A company ingests data from multiple data sources and stores the data in an Amazon S3 bucket. An AWS Glue extract, transform, and load (ETL) job transforms the data and writes the transformed data to an Amazon S3 based data lake. The company uses Amazon Athena to query the data that is in the data lake.

The company needs to identify matching records even when the records do not have a common unique identifier.

Which solution will meet this requirement?

A.

Use Amazon Made pattern matching as part of the ETL job.

B.

Train and use the AWS Glue PySpark Filter class in the ETL job.

C.

Partition tables and use the ETL job to partition the data on a unique identifier.

D.

Train and use the AWS Lake Formation FindMatches transform in the ETL job.

A data engineer needs Amazon Athena queries to finish faster. The data engineer notices that all the files the Athena queries use are currently stored in uncompressed .csv format. The data engineer also notices that users perform most queries by selecting a specific column.

Which solution will MOST speed up the Athena query performance?

A.

Change the data format from .csvto JSON format. Apply Snappy compression.

B.

Compress the .csv files by using Snappy compression.

C.

Change the data format from .csvto Apache Parquet. Apply Snappy compression.

D.

Compress the .csv files by using gzjg compression.

A company uses Amazon DataZone as a data governance and business catalog solution. The company stores data in an Amazon S3 data lake. The company uses AWS Glue with an AWS Glue Data Catalog.

A data engineer needs to publish AWS Glue Data Quality scores to the Amazon DataZone portal.

Which solution will meet this requirement?

A.

Create a data quality ruleset with Data Quality Definition Language (DQDL) rules that apply to a specific AWS Glue table. Schedule the ruleset to run daily. Configure the Amazon DataZone project to have an Amazon Redshift data source. Enable the data quality configuration for the data source.

B.

Configure AWS Glue ETL jobs to use an Evaluate Data Quality transform. Define a data quality ruleset inside the jobs. Configure the Amazon DataZone project to have an AWS Glue data source. Enable the data quality configuration for the data source.

C.

Create a data quality ruleset with Data Quality Definition Language (DQDL) rules that apply to a specific AWS Glue table. Schedule the ruleset to run daily. Configure the Amazon DataZone project to have an AWS Glue data source. Enable the data quality configuration for the data source.

D.

Configure AWS Glue ETL jobs to use an Evaluate Data Quality transform. Define a data quality ruleset inside the jobs. Configure the Amazon DataZone project to have an Amazon Redshift data source. Enable the data quality configuration for the data source.

A company stores sales data in an Amazon RDS for MySQL database. The company needs to start a reporting process between 6:00 A.M. and 6:10 A.M. every Monday. The reporting process must generate a CSV file and store the file in an Amazon S3 bucket.

Which combination of steps will meet these requirements with the LEAST operational overhead? (Select TWO.)

A.

Create an Amazon EventBridge rule to run every Monday at 6:00 A.M.

B.

Create an Amazon EventBridge Scheduler to run every Monday at 6:00 A.M.

C.

Create and invoke an AWS Batch job that runs a script in an Amazon Elastic Container Service (Amazon ECS) container. Configure the script to generate the report and to save it to the S3 bucket.

D.

Create and invoke an AWS Glue ETL job to generate the report and to save it to the S3 bucket.

E.

Create and invoke an Amazon EMR Serverless job to generate the report and to save it to the S3 bucket.

A company uploads .csv files to an Amazon S3 bucket. The company's data platform team has set up an AWS Glue crawler to perform data discovery and to create the tables and schemas.

An AWS Glue job writes processed data from the tables to an Amazon Redshift database. The AWS Glue job handles column mapping and creates the Amazon Redshift tables in the Redshift database appropriately.

If the company reruns the AWS Glue job for any reason, duplicate records are introduced into the Amazon Redshift tables. The company needs a solution that will update the Redshift tables without duplicates.

Which solution will meet these requirements?

A.

Modify the AWS Glue job to copy the rows into a staging Redshift table. Add SQL commands to update the existing rows with new values from the staging Redshift table.

B.

Modify the AWS Glue job to load the previously inserted data into a MySQL database. Perform an upsert operation in the MySQL database. Copy the results to the Amazon Redshift tables.

C.

Use Apache Spark's DataFrame dropDuplicates() API to eliminate duplicates. Write the data to the Redshift tables.

D.

Use the AWS Glue ResolveChoice built-in transform to select the value of the column from the most recent record.

A company hosts its applications on Amazon EC2 instances. The company must use SSL/TLS connections that encrypt data in transit to communicate securely with AWS infrastructure that is managed by a customer.

A data engineer needs to implement a solution to simplify the generation, distribution, and rotation of digital certificates. The solution must automatically renew and deploy SSL/TLS certificates.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Store self-managed certificates on the EC2 instances.

B.

Use AWS Certificate Manager (ACM).

C.

Implement custom automation scripts in AWS Secrets Manager.

D.

Use Amazon Elastic Container Service (Amazon ECS) Service Connect.

A data engineer needs to use AWS Step Functions to design an orchestration workflow. The workflow must parallel process a large collection of data files and apply a specific transformation to each file.

Which Step Functions state should the data engineer use to meet these requirements?

A.

Parallel state

B.

Choice state

C.

Map state

D.

Wait state

A healthcare company uses Amazon Kinesis Data Streams to stream real-time health data from wearable devices, hospital equipment, and patient records.

A data engineer needs to find a solution to process the streaming data. The data engineer needs to store the data in an Amazon Redshift Serverless warehouse. The solution must support near real-time analytics of the streaming data and the previous day's data.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Load data into Amazon Kinesis Data Firehose. Load the data into Amazon Redshift.

B.

Use the streaming ingestion feature of Amazon Redshift.

C.

Load the data into Amazon S3. Use the COPY command to load the data into Amazon Redshift.

D.

Use the Amazon Aurora zero-ETL integration with Amazon Redshift.