New Year Sale Special Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmas50

Amazon Web Services Data-Engineer-Associate - AWS Certified Data Engineer - Associate (DEA-C01)

A company uses AWS Glue Apache Spark jobs to handle extract, transform, and load (ETL) workloads. The company has enabled logging and monitoring for all AWS Glue jobs. One of the AWS Glue jobs begins to fail. A data engineer investigates the error and wants to examine metrics for all individual stages within the job. How can the data engineer access the stage metrics?

A.

Examine the AWS Glue job and stage details in the Spark UI.

B.

Examine the AWS Glue job and stage metrics in Amazon CloudWatch.

C.

Examine the AWS Glue job and stage logs in AWS CloudTrail logs.

D.

Examine the AWS Glue job and stage details by using the run insights feature on the job.

An ecommerce company wants to use AWS to migrate data pipelines from an on-premises environment into the AWS Cloud. The company currently uses a third-party too in the on-premises environment to orchestrate data ingestion processes.

The company wants a migration solution that does not require the company to manage servers. The solution must be able to orchestrate Python and Bash scripts. The solution must not require the company to refactor any code.

Which solution will meet these requirements with the LEAST operational overhead?

A.

AWS Lambda

B.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA)

C.

AWS Step Functions

D.

AWS Glue

A company has an application that uses a microservice architecture. The company hosts the application on an Amazon Elastic Kubernetes Services (Amazon EKS) cluster.

The company wants to set up a robust monitoring system for the application. The company needs to analyze the logs from the EKS cluster and the application. The company needs to correlate the cluster's logs with the application's traces to identify points of failure in the whole application request flow.

Which combination of steps will meet these requirements with the LEAST development effort? (Select TWO.)

A.

Use FluentBit to collect logs. Use OpenTelemetry to collect traces.

B.

Use Amazon CloudWatch to collect logs. Use Amazon Kinesis to collect traces.

C.

Use Amazon CloudWatch to collect logs. Use Amazon Managed Streaming for Apache Kafka (Amazon MSK) to collect traces.

D.

Use Amazon OpenSearch to correlate the logs and traces.

E.

Use AWS Glue to correlate the logs and traces.

A company uses Amazon S3 as a data lake. The company sets up a data warehouse by using a multi-node Amazon Redshift cluster. The company organizes the data files in the data lake based on the data source of each data file.

The company loads all the data files into one table in the Redshift cluster by using a separate COPY command for each data file location. This approach takes a long time to load all the data files into the table. The company must increase the speed of the data ingestion. The company does not want to increase the cost of the process.

Which solution will meet these requirements?

A.

Use a provisioned Amazon EMR cluster to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

B.

Load all the data files in parallel into Amazon Aurora. Run an AWS Glue job to load the data into Amazon Redshift.

C.

Use an AWS Glue job to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

D.

Create a manifest file that contains the data file locations. Use a COPY command to load the data into Amazon Redshift.

A data engineer develops an AWS Glue Apache Spark ETL job to perform transformations on a dataset. When the data engineer runs the job, the job returns an error that reads, "No space left on device."

The data engineer needs to identify the source of the error and provide a solution.

Which combinations of steps will meet this requirement MOST cost-effectively? (Select TWO.)

A.

Scale out the workers vertically to address data skewness.

B.

Use the Spark UI and AWS Glue metrics to monitor data skew in the Spark executors.

C.

Scale out the number of workers horizontally to address data skewness.

D.

Enable the --write-shuffle-files-to-s3 job parameter. Use the salting technique.

E.

Use error logs in Amazon CloudWatch to monitor data skew.