Winter Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ecus65

Amazon Web Services Data-Engineer-Associate - AWS Certified Data Engineer - Associate (DEA-C01)

A data engineer needs to build an extract, transform, and load (ETL) job. The ETL job will process daily incoming .csv files that users upload to an Amazon S3 bucket. The size of each S3 object is less than 100 MB.

Which solution will meet these requirements MOST cost-effectively?

A.

Write a custom Python application. Host the application on an Amazon Elastic Kubernetes Service (Amazon EKS) cluster.

B.

Write a PySpark ETL script. Host the script on an Amazon EMR cluster.

C.

Write an AWS Glue PySpark job. Use Apache Spark to transform the data.

D.

Write an AWS Glue Python shell job. Use pandas to transform the data.

A company implements a data mesh that has a central governance account. The company needs to catalog all data in the governance account. The governance account uses AWS Lake Formation to centrally share data and grant access permissions.

The company has created a new data product that includes a group of Amazon Redshift Serverless tables. A data engineer needs to share the data product with a marketing team. The marketing team must have access to only a subset of columns. The data engineer needs to share the same data product with a compliance team. The compliance team must have access to a different subset of columns than the marketing team needs access to.

Which combination of steps should the data engineer take to meet these requirements? (Select TWO.)

A.

Create views of the tables that need to be shared. Include only the required columns.

B.

Create an Amazon Redshift data than that includes the tables that need to be shared.

C.

Create an Amazon Redshift managed VPC endpoint in the marketing team's account. Grant the marketing team access to the views.

D.

Share the Amazon Redshift data share to the Lake Formation catalog in the governance account.

E.

Share the Amazon Redshift data share to the Amazon Redshift Serverless workgroup in the marketing team's account.

A company currently stores all of its data in Amazon S3 by using the S3 Standard storage class.

A data engineer examined data access patterns to identify trends. During the first 6 months, most data files are accessed several times each day. Between 6 months and 2 years, most data files are accessed once or twice each month. After 2 years, data files are accessed only once or twice each year.

The data engineer needs to use an S3 Lifecycle policy to develop new data storage rules. The new storage solution must continue to provide high availability.

Which solution will meet these requirements in the MOST cost-effective way?

A.

Transition objects to S3 One Zone-Infrequent Access (S3 One Zone-IA) after 6 months. Transfer objects to S3 Glacier Flexible Retrieval after 2 years.

B.

Transition objects to S3 Standard-Infrequent Access (S3 Standard-IA) after 6 months. Transfer objects to S3 Glacier Flexible Retrieval after 2 years.

C.

Transition objects to S3 Standard-Infrequent Access (S3 Standard-IA) after 6 months. Transfer objects to S3 Glacier Deep Archive after 2 years.

D.

Transition objects to S3 One Zone-Infrequent Access (S3 One Zone-IA) after 6 months. Transfer objects to S3 Glacier Deep Archive after 2 years.

A financial company wants to implement a data mesh. The data mesh must support centralized data governance, data analysis, and data access control. The company has decided to use AWS Glue for data catalogs and extract, transform, and load (ETL) operations.

Which combination of AWS services will implement a data mesh? (Choose two.)

A.

Use Amazon Aurora for data storage. Use an Amazon Redshift provisioned cluster for data analysis.

B.

Use Amazon S3 for data storage. Use Amazon Athena for data analysis.

C.

Use AWS Glue DataBrewfor centralized data governance and access control.

D.

Use Amazon RDS for data storage. Use Amazon EMR for data analysis.

E.

Use AWS Lake Formation for centralized data governance and access control.

A company stores datasets in JSON format and .csv format in an Amazon S3 bucket. The company has Amazon RDS for Microsoft SQL Server databases, Amazon DynamoDB tables that are in provisioned capacity mode, and an Amazon Redshift cluster. A data engineering team must develop a solution that will give data scientists the ability to query all data sources by using syntax similar to SQL.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use AWS Glue to crawl the data sources. Store metadata in the AWS Glue Data Catalog. Use Amazon Athena to query the data. Use SQL for structured data sources. Use PartiQL for data that is stored in JSON format.

B.

Use AWS Glue to crawl the data sources. Store metadata in the AWS Glue Data Catalog. Use Redshift Spectrum to query the data. Use SQL for structured data sources. Use PartiQL for data that is stored in JSON format.

C.

Use AWS Glue to crawl the data sources. Store metadata in the AWS Glue Data Catalog. Use AWS Glue jobs to transform data that is in JSON format to Apache Parquet or .csv format. Store the transformed data in an S3 bucket. Use Amazon Athena to query the original and transformed data from the S3 bucket.

D.

Use AWS Lake Formation to create a data lake. Use Lake Formation jobs to transform the data from all data sources to Apache Parquet format. Store the transformed data in an S3 bucket. Use Amazon Athena or Redshift Spectrum to query the data.

A company uses an Amazon Redshift cluster as a data warehouse that is shared across two departments. To comply with a security policy, each department must have unique access permissions.

Department A must have access to tables and views for Department A. Department B must have access to tables and views for Department B.

The company often runs SQL queries that use objects from both departments in one query.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Group tables and views for each department into dedicated schemas. Manage permissions at the schema level.

B.

Group tables and views for each department into dedicated databases. Manage permissions at the database level.

C.

Update the names of the tables and views to follow a naming convention that contains the department names. Manage permissions based on the new naming convention.

D.

Create an IAM user group for each department. Use identity-based IAM policies to grant table and view permissions based on the IAM user group.

A manufacturing company collects sensor data from its factory floor to monitor and enhance operational efficiency. The company uses Amazon Kinesis Data Streams to publish the data that the sensors collect to a data stream. Then Amazon Kinesis Data Firehose writes the data to an Amazon S3 bucket.

The company needs to display a real-time view of operational efficiency on a large screen in the manufacturing facility.

Which solution will meet these requirements with the LOWEST latency?

A.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to process the sensor data. Use a connector for Apache Flink to write data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard.

B.

Configure the S3 bucket to send a notification to an AWS Lambda function when any new object is created. Use the Lambda function to publish the data to Amazon Aurora. Use Aurora as a source to create an Amazon QuickSight dashboard.

C.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to process the sensor data. Create a new Data Firehose delivery stream to publish data directly to an Amazon Timestream database. Use the Timestream database as a source to create an Amazon QuickSight dashboard.

D.

Use AWS Glue bookmarks to read sensor data from the S3 bucket in real time. Publish the data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard.

A company needs a solution to manage costs for an existing Amazon DynamoDB table. The company also needs to control the size of the table. The solution must not disrupt any ongoing read or write operations. The company wants to use a solution that automatically deletes data from the table after 1 month.

Which solution will meet these requirements with the LEAST ongoing maintenance?

A.

Use the DynamoDB TTL feature to automatically expire data based on timestamps.

B.

Configure a scheduled Amazon EventBridge rule to invoke an AWS Lambda function to check for data that is older than 1 month. Configure the Lambda function to delete old data.

C.

Configure a stream on the DynamoDB table to invoke an AWS Lambda function. Configure the Lambda function to delete data in the table that is older than 1 month.

D.

Use an AWS Lambda function to periodically scan the DynamoDB table for data that is older than 1 month. Configure the Lambda function to delete old data.

A data engineer is using Amazon Athena to analyze sales data that is in Amazon S3. The data engineer writes a query to retrieve sales amounts for 2023 for several products from a table named sales_data. However, the query does not return results for all of the products that are in the sales_data table. The data engineer needs to troubleshoot the query to resolve the issue.

The data engineer's original query is as follows:

SELECT product_name, sum(sales_amount)

FROM sales_data

WHERE year = 2023

GROUP BY product_name

How should the data engineer modify the Athena query to meet these requirements?

A.

Replace sum(sales amount) with count(*J for the aggregation.

B.

Change WHERE year = 2023 to WHERE extractlyear FROM sales data) = 2023.

C.

Add HAVING sumfsales amount) > 0 after the GROUP BY clause.

D.

Remove the GROUP BY clause

A company uses AWS Step Functions to orchestrate a data pipeline. The pipeline consists of Amazon EMR jobs that ingest data from data sources and store the data in an Amazon S3 bucket. The pipeline also includes EMR jobs that load the data to Amazon Redshift.

The company's cloud infrastructure team manually built a Step Functions state machine. The cloud infrastructure team launched an EMR cluster into a VPC to support the EMR jobs. However, the deployed Step Functions state machine is not able to run the EMR jobs.

Which combination of steps should the company take to identify the reason the Step Functions state machine is not able to run the EMR jobs? (Choose two.)

A.

Use AWS CloudFormation to automate the Step Functions state machine deployment. Create a step to pause the state machine during the EMR jobs that fail. Configure the step to wait for a human user to send approval through an email message. Include details of the EMR task in the email message for further analysis.

B.

Verify that the Step Functions state machine code has all IAM permissions that are necessary to create and run the EMR jobs. Verify that the Step Functions state machine code also includes IAM permissions to access the Amazon S3 buckets that the EMR jobs use. Use Access Analyzer for S3 to check the S3 access properties.

C.

Check for entries in Amazon CloudWatch for the newly created EMR cluster. Change the AWS Step Functions state machine code to use Amazon EMR on EKS. Change the IAM access policies and the security group configuration for the Step Functions state machine code to reflect inclusion of Amazon Elastic Kubernetes Service (Amazon EKS).

D.

Query the flow logs for the VPC. Determine whether the traffic that originates from the EMR cluster can successfully reach the data providers. Determine whether any security group that might be attached to the Amazon EMR cluster allows connections to the data source servers on the informed ports.

E.

Check the retry scenarios that the company configured for the EMR jobs. Increase the number of seconds in the interval between each EMR task. Validate that each fallback state has the appropriate catch for each decision state. Configure an Amazon Simple Notification Service (Amazon SNS) topic to store the error messages.