Amazon Web Services MLA-C01 - AWS Certified Machine Learning Engineer - Associate
A company has an existing Amazon SageMaker AI model (v1) on a production endpoint. The company develops a new model version (v2) and needs to test v2 in production before substituting v2 for v1.
The company needs to minimize the risk of v2 generating incorrect output in production and must prevent any disruption of production traffic during the change.
Which solution will meet these requirements?
An ML engineer is setting up an Amazon SageMaker AI pipeline for an ML model. The pipeline must automatically initiate a re-training job if any data drift is detected.
How should the ML engineer set up the pipeline to meet this requirement?
A company is developing an ML model to forecast future values based on time series data. The dataset includes historical measurements collected at regular intervals and categorical features. The model needs to predict future values based on past patterns and trends.
Which algorithm and hyperparameters should the company use to develop the model?
A company's ML engineer has deployed an ML model for sentiment analysis to an Amazon SageMaker endpoint. The ML engineer needs to explain to company stakeholders how the model makes predictions.
Which solution will provide an explanation for the model's predictions?
A company is developing a generative AI conversational interface to assist customers with payments. The company wants to use an ML solution to detect customer intent. The company does not have training data to train a model.
Which solution will meet these requirements?
A company needs to ingest data from data sources into Amazon SageMaker Data Wrangler. The data sources are Amazon S3, Amazon Redshift, and Snowflake. The ingested data must always be up to date with the latest changes in the source systems.
Which solution will meet these requirements?
An ML engineer needs to use an ML model to predict the price of apartments in a specific location.
Which metric should the ML engineer use to evaluate the model’s performance?
An ML engineer is training a simple neural network model. The ML engineer tracks the performance of the model over time on a validation dataset. The model's performance improves substantially at first and then degrades after a specific number of epochs.
Which solutions will mitigate this problem? (Choose two.)
A company is using an Amazon S3 bucket to collect data that will be used for ML workflows. The company needs to use AWS Glue DataBrew to clean and normalize the data.
Which solution will meet these requirements?
An ML engineer needs to run intensive model training jobs each month that can take 48–72 hours. The jobs can be interrupted and resumed. The engineer has a fixed budget and needs the most cost-effective compute option.
Which solution will meet these requirements?
