Amazon Web Services MLS-C01 - AWS Certified Machine Learning - Specialty
A financial services company wants to automate its loan approval process by building a machine learning (ML) model. Each loan data point contains credit history from a third-party data source and demographic information about the customer. Each loan approval prediction must come with a report that contains an explanation for why the customer was approved for a loan or was denied for a loan. The company will use Amazon SageMaker to build the model.
Which solution will meet these requirements with the LEAST development effort?
The displayed graph is from a foresting model for testing a time series.
Considering the graph only, which conclusion should a Machine Learning Specialist make about the behavior of the model?
A company wants to predict the sale prices of houses based on available historical sales data. The target
variable in the company’s dataset is the sale price. The features include parameters such as the lot size, living
area measurements, non-living area measurements, number of bedrooms, number of bathrooms, year built,
and postal code. The company wants to use multi-variable linear regression to predict house sale prices.
Which step should a machine learning specialist take to remove features that are irrelevant for the analysis
and reduce the model’s complexity?
A machine learning (ML) engineer has created a feature repository in Amazon SageMaker Feature Store for the company. The company has AWS accounts for development, integration, and production. The company hosts a feature store in the development account. The company uses Amazon S3 buckets to store feature values offline. The company wants to share features and to allow the integration account and the production account to reuse the features that are in the feature repository.
Which combination of steps will meet these requirements? (Select TWO.)
A growing company has a business-critical key performance indicator (KPI) for the uptime of a machine learning (ML) recommendation system. The company is using Amazon SageMaker hosting services to develop a recommendation model in a single Availability Zone within an AWS Region.
A machine learning (ML) specialist must develop a solution to achieve high availability. The solution must have a recovery time objective (RTO) of 5 minutes.
Which solution will meet these requirements with the LEAST effort?
A Data Scientist is training a multilayer perception (MLP) on a dataset with multiple classes. The target class of interest is unique compared to the other classes within the dataset, but it does not achieve and acceptable ecall metric. The Data Scientist has already tried varying the number and size of the MLP’s hidden layers,
which has not significantly improved the results. A solution to improve recall must be implemented as quickly as possible.
Which techniques should be used to meet these requirements?
A company wants to conduct targeted marketing to sell solar panels to homeowners. The company wants to use machine learning (ML) technologies to identify which houses already have solar panels. The company has collected 8,000 satellite images as training data and will use Amazon SageMaker Ground Truth to label the data.
The company has a small internal team that is working on the project. The internal team has no ML expertise and no ML experience.
Which solution will meet these requirements with the LEAST amount of effort from the internal team?
A company's machine learning (ML) specialist is building a computer vision model to classify 10 different traffic signs. The company has stored 100 images of each class in Amazon S3, and the company has another 10.000 unlabeled images. All the images come from dash cameras and are a size of 224 pixels * 224 pixels. After several training runs, the model is overfitting on the training data.
Which actions should the ML specialist take to address this problem? (Select TWO.)