Summer Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ecus65

Google Professional-Cloud-Network-Engineer - Google Cloud Certified - Professional Cloud Network Engineer

You are troubleshooting an application in your organization's Google Cloud network that is not functioning as expected. You suspect that packets are getting lost somewhere. The application sends packets intermittently at a low volume from a Compute Engine VM to a destination on your on-premises network through a pair of Cloud Interconnect VLAN attachments. You validated that the Cloud Next Generation Firewall (Cloud NGFW) rules do not have any deny statements blocking egress traffic, and you do not have any explicit allow rules. Following Google-recommended practices, you need to analyze the flow to see if packets are being sent correctly out of the VM to isolate the issue. What should you do?

A.

Create a packet mirroring policy that is configured with your VM as the source and destined to a collector. Analyze the packet captures.

B.

Enable VPC Flow Logs on the subnet that the VM is deployed in with sample_rate = 1.0, and run a query in Logs Explorer to analyze the packet flow.

C.

Enable Firewall Rules Logging on your firewall rules and review the logs.

D.

Verify the network/attachment/egress_dropped_packet.s_count Cloud Interconnect VLAN attachment metric.

You successfully provisioned a single Dedicated Interconnect. The physical connection is at a colocation facility closest to us-west2. Seventy-five percent of your workloads are in us-east4, and the remaining twenty-five percent of your workloads are in us-central1. All workloads have the same network traffic profile. You need to minimize data transfer costs when deploying VLAN attachments. What should you do?

A.

Keep the existing Dedicated interconnect. Deploy a VLAN attachment to a Cloud Router in us-west2, and use VPC global routing to access workloads in us-east4 and us-central1.

B.

Keep the existing Dedicated Interconnect. Deploy a VLAN attachment to a Cloud Router in us-east4, and deploy another VLAN attachment to a Cloud Router in us-central1.

C.

Order a new Dedicated Interconnect for a colocation facility closest to us-east4, and use VPC global routing to access workloads in us-central1.

D.

Order a new Dedicated Interconnect for a colocation facility closest to us-central1, and use VPC global routing to access workloads in us-east4.

Question:

Your organization has an on-premises data center. You need to provide connectivity from the on-premises data center to Google Cloud. Bandwidth must be at least 1 Gbps, and the traffic must not traverse the internet. What should you do?

A.

Configure HA VPN by using high availability gateways and tunnels.

B.

Configure Dedicated Interconnect by creating a VLAN attachment, activate the connection, and submit the pairing key to your service provider.

C.

Configure Cross-Cloud Interconnect by creating a VLAN attachment, activate the connection, and then submit the pairing key to your service provider.

D.

Configure Partner Interconnect by creating a VLAN attachment, submit the pairing key to your service provider, and activate the connection.

Your company offers a popular gaming service. Your instances are deployed with private IP addresses, and external access is granted through a global load balancer. You believe you have identified a potential malicious actor, but aren't certain you have the correct client IP address. You want to identify this actor while minimizing disruption to your legitimate users.

What should you do?

A.

Create a Cloud Armor Policy rule that denies traffic and review necessary logs.

B.

Create a Cloud Armor Policy rule that denies traffic, enable preview mode, and review necessary logs.

C.

Create a VPC Firewall rule that denies traffic, enable logging and set enforcement to disabled, and review necessary logs.

D.

Create a VPC Firewall rule that denies traffic, enable logging and set enforcement to enabled, and review necessary logs.

Your company's security team tends to use managed services when possible. You need to build a dashboard to show the number of deny hits that occur against configured firewall rules without increasing operational overhead. What should you do?

A.

Configure Firewall Rules Logging. Use Firewall Insights to display the number of hits.

B.

Configure Firewall Rules Logging. View the logs in Cloud Logging, and create a custom dashboard in Cloud Monitoring to display the number of hits.

C.

Configure a firewall appliance from the Google Cloud Marketplace. Route all traffic through this appliance, and apply the firewall rules at this layer. Use the firewall appliance to display the number of hits.

D.

Configure Packet Mirroring on the VPC. Apply a filter with an IP address list of the Denied Firewall rules. Configure an intrusion detection system (IDS) appliance as the receiver to display the number of hits.

You have the following Shared VPC design VPC Flow Logs is configured for Subnet-1 In the host VPC. You also want to monitor flow logs for Subnet-2. What should you do?

A.

Configure a firewall rule to permit Subnet-2 IP addresses outbound in the host protect VPC.

B.

Configure Packet Mirroring in both the host and service project VPCs.

C.

Configure a VPC Flow Logs filter for Subnet-2 in the host project VPC.

D.

Configure VPC Flow Logs in the service project VPC for Subnet-2.

Question:

You are configuring the firewall endpoints as part of the Cloud Next Generation Firewall (Cloud NGFW) intrusion prevention service in Google Cloud. You have configured a threat prevention security profile, and you now need to create an endpoint for traffic inspection. What should you do?

A.

Attach the profile to the VPC network, create a firewall endpoint within the zone, and use a firewall policy rule to apply the L7 inspection.

B.

Create a firewall endpoint within the zone, associate the endpoint to the VPC network, and use a firewall policy rule to apply the L7 inspection.

C.

Create a firewall endpoint within the region, associate the endpoint to the VPC network, and use a firewall policy rule to apply the L7 inspection.

D.

Create a Private Service Connect endpoint within the zone, associate the endpoint to the VPC network, and use a firewall policy rule to apply the L7 inspection.

Question:

Your organization is deploying a mission-critical application with components in different regions due to strict compliance requirements. There are latency issues between different applications that reside in us-central1 and us-east4. The application team suspects the Google Cloud network as the source of the excessive latency despite using the Premium Network Service Tier. You need to use Google-recommended practices with the least amount of effort to verify the inter-region latency by investigating network performance. What should you do?

A.

Set up the Performance Dashboard in Network Intelligence Center. Select the traffic type (cross-zonal), the metric (latency - RTT), the time period, the desired regions (us-central1 and us-east4), and the network tier.

B.

Enable VPC Flow Logs for the VPC. Identify major bottlenecks from the application level using Flow Analyzer.

C.

Configure two Linux VMs in each zone for each region. Install the application, and run a load test using each zone from different regions.

D.

Configure a VM with a probe in Network Intelligence Center in each zone for each region. Choose the traffic type (cross-zonal), metric (latency - RTT), desired regions (us-central1 and us-east4), and the network tier.

You ate planning to use Terraform to deploy the Google Cloud infrastructure for your company, The design must meet the following requirements

• Each Google Cloud project must represent an Internal project that your team Will work on

• After an Internal project is finished, the infrastructure must be deleted

• Each Internal project must have Its own Google Cloud project owner to manage the Google Cloud resources.

• You have 10—100 projects deployed at a time

While you are writing the Terraform code, you need to ensure that the deployment is simple and the code is reusable With

centralized management What should you do?

A.

Create a Single project and additional VPCs for each internal project

B.

Create a Single Shared VPC and attach each Google Cloud project as a service project

C.

Create a Single project and Single VPC for each internal project

D.

Create a Shared VPC and service project for each internal project

(You need to migrate multiple PostgreSQL databases from your on-premises data center to Google Cloud. You want to significantly improve the performance of your databases while minimizing changes to your data schema and application code. You expect to exceed 150 TB of data per geographical region. You want to follow Google-recommended practices and minimize your operational costs. What should you do?)

A.

Migrate your data to AlloyDB.

B.

Migrate your data to Spanner.

C.

Migrate your data to Firebase.

D.

Migrate your data to Bigtable.