Google Professional-Data-Engineer - Google Professional Data Engineer Exam
Total 376 questions
Your startup has a web application that currently serves customers out of a single region in Asia. You are targeting funding that will allow your startup lo serve customers globally. Your current goal is to optimize for cost, and your post-funding goat is to optimize for global presence and performance. You must use a native JDBC driver. What should you do?
You work for a farming company. You have one BigQuery table named sensors, which is about 500 MB and contains the list of your 5000 sensors, with columns for id, name, and location. This table is updated every hour. Each sensor generates one metric every 30 seconds along with a timestamp. which you want to store in BigQuery. You want to run an analytical query on the data once a week for monitoring purposes. You also want to minimize costs. What data model should you use?
You are designing a Dataflow pipeline for a batch processing job. You want to mitigate multiple zonal failures at job submission time. What should you do?
You are designing a messaging system by using Pub/Sub to process clickstream data with an event-driven consumer app that relies on a push subscription. You need to configure the messaging system that is reliable enough to handle temporary downtime of the consumer app. You also need the messaging system to store the input messages that cannot be consumed by the subscriber. The system needs to retry failed messages gradually, avoiding overloading the consumer app, and store the failed messages after a maximum of 10 retries in a topic. How should you configure the Pub/Sub subscription?
You want to rebuild your batch pipeline for structured data on Google Cloud You are using PySpark to conduct data transformations at scale, but your pipelines are taking over twelve hours to run. To expedite development and pipeline run time, you want to use a serverless tool and SQL syntax You have already moved your raw data into Cloud Storage How should you build the pipeline on Google Cloud while meeting speed and processing requirements?
You want to analyze hundreds of thousands of social media posts daily at the lowest cost and with the fewest steps.
You have the following requirements:
You will batch-load the posts once per day and run them through the Cloud Natural Language API.
You will extract topics and sentiment from the posts.
You must store the raw posts for archiving and reprocessing.
You will create dashboards to be shared with people both inside and outside your organization.
You need to store both the data extracted from the API to perform analysis as well as the raw social media posts for historical archiving. What should you do?
You need to create a new transaction table in Cloud Spanner that stores product sales data. You are deciding what to use as a primary key. From a performance perspective, which strategy should you choose?
You need to migrate a 2TB relational database to Google Cloud Platform. You do not have the resources to significantly refactor the application that uses this database and cost to operate is of primary concern.
Which service do you select for storing and serving your data?
You work for a manufacturing company that sources up to 750 different components, each from a different supplier. You’ve collected a labeled dataset that has on average 1000 examples for each unique component. Your team wants to implement an app to help warehouse workers recognize incoming components based on a photo of the component. You want to implement the first working version of this app (as Proof-Of-Concept) within a few working days. What should you do?
Does Dataflow process batch data pipelines or streaming data pipelines?