Google Professional-Data-Engineer - Google Professional Data Engineer Exam
Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?
Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?
You have a data analyst team member who needs to analyze data by using BigQuery. The data analyst wants to create a data pipeline that would load 200 CSV files with an average size of 15MB from a Cloud Storage bucket into BigQuery daily. The data needs to be ingested and transformed before being accessed in BigQuery for analysis. You need to recommend a fully managed, no-code solution for the data analyst. What should you do?
You need to create a data pipeline that copies time-series transaction data so that it can be queried from within BigQuery by your data science team for analysis. Every hour, thousands of transactions are updated with a new status. The size of the intitial dataset is 1.5 PB, and it will grow by 3 TB per day. The data is heavily structured, and your data science team will build machine learning models based on this data. You want to maximize performance and usability for your data science team. Which two strategies should you adopt? Choose 2 answers.
You are building a report-only data warehouse where the data is streamed into BigQuery via the streaming API Following Google's best practices, you have both a staging and a production table for the data How should you design your data loading to ensure that there is only one master dataset without affecting performance on either the ingestion or reporting pieces?
You are running your BigQuery project in the on-demand billing model and are executing a change data capture (CDC) process that ingests data. The CDC process loads 1 GB of data every 10 minutes into a temporary table, and then performs a merge into a 10 TB target table. This process is very scan intensive and you want to explore options to enable a predictable cost model. You need to create a BigQuery reservation based on utilization information gathered from BigQuery Monitoring and apply the reservation to the CDC process. What should you do?
You are designing a Dataflow pipeline for a batch processing job. You want to mitigate multiple zonal failures at job submission time. What should you do?
You used Cloud Dataprep to create a recipe on a sample of data in a BigQuery table. You want to reuse this recipe on a daily upload of data with the same schema, after the load job with variable execution time completes. What should you do?
You are collecting loT sensor data from millions of devices across the world and storing the data in BigQuery. Your access pattern is based on recent data tittered by location_id and device_version with the following query:
You want to optimize your queries for cost and performance. How should you structure your data?
MJTelco’s Google Cloud Dataflow pipeline is now ready to start receiving data from the 50,000 installations. You want to allow Cloud Dataflow to scale its compute power up as required. Which Cloud Dataflow pipeline configuration setting should you update?
