Summer Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ecus65

Google Professional-Machine-Learning-Engineer - Google Professional Machine Learning Engineer

You have been tasked with deploying prototype code to production. The feature engineering code is in PySpark and runs on Dataproc Serverless. The model training is executed by using a Vertex Al custom training job. The two steps are not connected, and the model training must currently be run manually after the feature engineering step finishes. You need to create a scalable and maintainable production process that runs end-to-end and tracks the connections between steps. What should you do?

A.

Create a Vertex Al Workbench notebook Use the notebook to submit the Dataproc Serverless feature engineering job Use the same notebook to submit the custom model training job Run the notebook cells sequentially to tie the steps together end-to-end

B.

Create a Vertex Al Workbench notebook Initiate an Apache Spark context in the notebook, and run the PySpark feature engineering code Use the same notebook to run the custom model training job in TensorFlow Run the notebook cells sequentially to tie the steps together end-to-end

C.

Use the Kubeflow pipelines SDK to write code that specifies two components

- The first is a Dataproc Serverless component that launches the feature engineering job

- The second is a custom component wrapped in the

creare_cusrora_rraining_job_from_ccraponent Utility that launches the custom model training

job.

D.

Create a Vertex Al Pipelines job to link and run both components Use the Kubeflow pipelines SDK to write code that specifies two components

- The first component initiates an Apache Spark context that runs the PySpark feature engineering code

- The second component runs the TensorFlow custom model training code Create a Vertex Al Pipelines job to link and run both components

You need to develop a custom TensorRow model that will be used for online predictions. The training data is stored in BigQuery. You need to apply instance-level data transformations to the data for model training and serving. You want to use the same preprocessing routine during model training and serving. How should you configure the preprocessing routine?

A.

Create a BigQuery script to preprocess the data, and write the result to another BigQuery table.

B.

Create a pipeline in Vertex Al Pipelines to read the data from BigQuery and preprocess it using a custom preprocessing component.

C.

Create a preprocessing function that reads and transforms the data from BigQuery Create a Vertex Al custom prediction routine that calls the preprocessing function at serving time.

D.

Create an Apache Beam pipeline to read the data from BigQuery and preprocess it by using TensorFlow Transform and Dataflow.

You are using Kubeflow Pipelines to develop an end-to-end PyTorch-based MLOps pipeline. The pipeline reads data from BigQuery,

processes the data, conducts feature engineering, model training, model evaluation, and deploys the model as a binary file to Cloud Storage. You are

writing code for several different versions of the feature engineering and model training steps, and running each new version in Vertex Al Pipelines.

Each pipeline run is taking over an hour to complete. You want to speed up the pipeline execution to reduce your development time, and you want to

avoid additional costs. What should you do?

A.

Delegate feature engineering to BigQuery and remove it from the pipeline.

B.

Add a GPU to the model training step.

C.

Enable caching in all the steps of the Kubeflow pipeline.

D.

Comment out the part of the pipeline that you are not currently updating.

Your organization's call center has asked you to develop a model that analyzes customer sentiments in each call. The call center receives over one million calls daily, and data is stored in Cloud Storage. The data collected must not leave the region in which the call originated, and no Personally Identifiable Information (Pll) can be stored or analyzed. The data science team has a third-party tool for visualization and access which requires a SQL ANSI-2011 compliant interface. You need to select components for data processing and for analytics. How should the data pipeline be designed?

A.

1 = Dataflow, 2 = BigQuery

B.

1 = Pub/Sub, 2 = Datastore

C.

1 = Dataflow, 2 = Cloud SQL

D.

1 = Cloud Function, 2 = Cloud SQL

You developed a Vertex Al ML pipeline that consists of preprocessing and training steps and each set of steps runs on a separate custom Docker image Your organization uses GitHub and GitHub Actions as CI/CD to run unit and integration tests You need to automate the model retraining workflow so that it can be initiated both manually and when a new version of the code is merged in the main branch You want to minimize the steps required to build the workflow while also allowing for maximum flexibility How should you configure the CI/CD workflow?

A.

Trigger a Cloud Build workflow to run tests build custom Docker images, push the images to Artifact Registry and launch the pipeline in Vertex Al Pipelines.

B.

Trigger GitHub Actions to run the tests launch a job on Cloud Run to build custom Docker images push the images to Artifact Registry and launch the pipeline in Vertex Al Pipelines.

C.

Trigger GitHub Actions to run the tests build custom Docker images push the images to Artifact Registry, and launch the pipeline in Vertex Al Pipelines.

D.

Trigger GitHub Actions to run the tests launch a Cloud Build workflow to build custom Dicker images, push the images to Artifact Registry, and launch the pipeline in Vertex Al Pipelines.

You are the lead ML engineer on a mission-critical project that involves analyzing massive datasets using Apache Spark. You need to establish a robust environment that allows your team to rapidly prototype Spark models using Jupyter notebooks. What is the fastest way to achieve this?

A.

Configure a Compute Engine instance with Spark and use Jupyter notebooks.

B.

Set up a Dataproc cluster with Spark and use Jupyter notebooks.

C.

Set up a Vertex AI Workbench instance with a Spark kernel.

D.

Use Colab Enterprise with a Spark kernel.

You work for a pet food company that manages an online forum Customers upload photos of their pets on the forum to share with others About 20 photos are uploaded daily You want to automatically and in near real time detect whether each uploaded photo has an animal You want to prioritize time and minimize cost of your application development and deployment What should you do?

A.

Send user-submitted images to the Cloud Vision API Use object localization to identify all objects in the image and compare the results against a list of animals.

B.

Download an object detection model from TensorFlow Hub. Deploy the model to a Vertex Al endpoint. Send new user-submitted images to the model endpoint to classify whether each photo has an animal.

C.

Manually label previously submitted images with bounding boxes around any animals Build an AutoML object detection model by using Vertex Al Deploy the model to a Vertex Al endpoint Send new user-submitted images to your model endpoint to detect whether each photo has an animal.

D.

Manually label previously submitted images as having animals or not Create an image dataset on Vertex Al Train a classification model by using Vertex AutoML to distinguish the two classes Deploy the model to a Vertex Al endpoint Send new user-submitted images to your model endpoint to classify whether each photo has an animal.

You have recently created a proof-of-concept (POC) deep learning model. You are satisfied with the overall architecture, but you need to determine the value for a couple of hyperparameters. You want to perform hyperparameter tuning on Vertex AI to determine both the appropriate embedding dimension for a categorical feature used by your model and the optimal learning rate. You configure the following settings:

For the embedding dimension, you set the type to INTEGER with a minValue of 16 and maxValue of 64.

For the learning rate, you set the type to DOUBLE with a minValue of 10e-05 and maxValue of 10e-02.

You are using the default Bayesian optimization tuning algorithm, and you want to maximize model accuracy. Training time is not a concern. How should you set the hyperparameter scaling for each hyperparameter and the maxParallelTrials?

A.

Use UNIT_LINEAR_SCALE for the embedding dimension, UNIT_LOG_SCALE for the learning rate, and a large number of parallel trials.

B.

Use UNIT_LINEAR_SCALE for the embedding dimension, UNIT_LOG_SCALE for the learning rate, and a small number of parallel trials.

C.

Use UNIT_LOG_SCALE for the embedding dimension, UNIT_LINEAR_SCALE for the learning rate, and a large number of parallel trials.

D.

Use UNIT_LOG_SCALE for the embedding dimension, UNIT_LINEAR_SCALE for the learning rate, and a small number of parallel trials.

You are an ML engineer in the contact center of a large enterprise. You need to build a sentiment analysis tool that predicts customer sentiment from recorded phone conversations. You need to identify the best approach to building a model while ensuring that the gender, age, and cultural differences of the customers who called the contact center do not impact any stage of the model development pipeline and results. What should you do?

A.

Extract sentiment directly from the voice recordings

B.

Convert the speech to text and build a model based on the words

C.

Convert the speech to text and extract sentiments based on the sentences

D.

Convert the speech to text and extract sentiment using syntactical analysis

You work for a bank and are building a random forest model for fraud detection. You have a dataset that

includes transactions, of which 1% are identified as fraudulent. Which data transformation strategy would likely improve the performance of your classifier?

A.

Write your data in TFRecords.

B.

Z-normalize all the numeric features.

C.

Oversample the fraudulent transaction 10 times.

D.

Use one-hot encoding on all categorical features.