Summer Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ecus65

Google Professional-Machine-Learning-Engineer - Google Professional Machine Learning Engineer

You have deployed a model on Vertex AI for real-time inference. During an online prediction request, you get an “Out of Memory” error. What should you do?

A.

Use batch prediction mode instead of online mode.

B.

Send the request again with a smaller batch of instances.

C.

Use base64 to encode your data before using it for prediction.

D.

Apply for a quota increase for the number of prediction requests.

You are developing a training pipeline for a new XGBoost classification model based on tabular data The data is stored in a BigQuery table You need to complete the following steps

1. Randomly split the data into training and evaluation datasets in a 65/35 ratio

2. Conduct feature engineering

3 Obtain metrics for the evaluation dataset.

4 Compare models trained in different pipeline executions

How should you execute these steps'?

A.

1 Using Vertex Al Pipelines, add a component to divide the data into training and evaluation sets, and add another component for feature engineering

2. Enable auto logging of metrics in the training component.

3 Compare pipeline runs in Vertex Al Experiments

B.

1 Using Vertex Al Pipelines, add a component to divide the data into training and evaluation sets, and add another component for feature engineering

2 Enable autologging of metrics in the training component

3 Compare models using the artifacts lineage in Vertex ML Metadata

C.

1 In BigQuery ML. use the create model statement with bocstzd_tree_classifier as the model

type and use BigQuery to handle the data splits.

2 Use a SQL view to apply feature engineering and train the model using the data in that view

3. Compare the evaluation metrics of the models by using a SQL query with the ml. training_infc statement.

D.

1 In BigQuery ML use the create model statement with boosted_tree_classifier as the model

type, and use BigQuery to handle the data splits.

2 Use ml transform to specify the feature engineering transformations, and train the model using the

data in the table

' 3. Compare the evaluation metrics of the models by using a SQL query with the ml. training_info statement.

You are using Keras and TensorFlow to develop a fraud detection model Records of customer transactions are stored in a large table in BigQuery. You need to preprocess these records in a cost-effective and efficient way before you use them to train the model. The trained model will be used to perform batch inference in BigQuery. How should you implement the preprocessing workflow?

A.

Implement a preprocessing pipeline by using Apache Spark, and run the pipeline on Dataproc Save the preprocessed data as CSV files in a Cloud Storage bucket.

B.

Load the data into a pandas DataFrame Implement the preprocessing steps using panda’s transformations. and train the model directly on the DataFrame.

C.

Perform preprocessing in BigQuery by using SQL Use the BigQueryClient in TensorFlow to read the data directly from BigQuery.

D.

Implement a preprocessing pipeline by using Apache Beam, and run the pipeline on Dataflow Save the preprocessed data as CSV files in a Cloud Storage bucket.

You work at a gaming startup that has several terabytes of structured data in Cloud Storage. This data includes gameplay time data user metadata and game metadata. You want to build a model that recommends new games to users that requires the least amount of coding. What should you do?

A.

Load the data in BigQuery Use BigQuery ML to tram an Autoencoder model.

B.

Load the data in BigQuery Use BigQuery ML to train a matrix factorization model.

C.

Read data to a Vertex Al Workbench notebook Use TensorFlow to train a two-tower model.

D.

Read data to a Vertex AI Workbench notebook Use TensorFlow to train a matrix factorization model.

One of your models is trained using data provided by a third-party data broker. The data broker does not reliably notify you of formatting changes in the data. You want to make your model training pipeline more robust to issues like this. What should you do?

A.

Use TensorFlow Data Validation to detect and flag schema anomalies.

B.

Use TensorFlow Transform to create a preprocessing component that will normalize data to the expected distribution, and replace values that don’t match the schema with 0.

C.

Use tf.math to analyze the data, compute summary statistics, and flag statistical anomalies.

D.

Use custom TensorFlow functions at the start of your model training to detect and flag known formatting errors.