Weekend Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmas50

Databricks Databricks-Certified-Professional-Data-Engineer - Databricks Certified Data Engineer Professional Exam

The data engineering team has configured a job to process customer requests to be forgotten (have their data deleted). All user data that needs to be deleted is stored in Delta Lake tables using default table settings.

The team has decided to process all deletions from the previous week as a batch job at 1am each Sunday. The total duration of this job is less than one hour. Every Monday at 3am, a batch job executes a series ofVACUUMcommands on all Delta Lake tables throughout the organization.

The compliance officer has recently learned about Delta Lake's time travel functionality. They are concerned that this might allow continued access to deleted data.

Assuming all delete logic is correctly implemented, which statement correctly addresses this concern?

A.

Because the vacuum command permanently deletes all files containing deleted records, deleted records may be accessible with time travel for around 24 hours.

B.

Because the default data retention threshold is 24 hours, data files containing deleted records will be retained until the vacuum job is run the following day.

C.

Because Delta Lake time travel provides full access to the entire history of a table, deleted records can always be recreated by users with full admin privileges.

D.

Because Delta Lake's delete statements have ACID guarantees, deleted records will be permanently purged from all storage systems as soon as a delete job completes.

E.

Because the default data retention threshold is 7 days, data files containing deleted records will be retained until the vacuum job is run 8 days later.

The DevOps team has configured a production workload as a collection of notebooks scheduled to run daily using the Jobs UI. A new data engineering hire is onboarding to the team and has requested access to one of these notebooks to review the production logic.

What are the maximum notebook permissions that can be granted to the user without allowing accidental changes to production code or data?

A.

Can Manage

B.

Can Edit

C.

No permissions

D.

Can Read

E.

Can Run

A production workload incrementally applies updates from an external Change Data Capture feed to a Delta Lake table as an always-on Structured Stream job. When data was initially migrated for this table, OPTIMIZE was executed and most data files were resized to 1 GB. Auto Optimize and Auto Compaction were both turned on for the streaming production job. Recent review of data files shows that most data files are under 64 MB, although each partition in the table contains at least 1 GB of data and the total table size is over 10 TB.

Which of the following likely explains these smaller file sizes?

A.

Databricks has autotuned to a smaller target file size to reduce duration of MERGE operations

B.

Z-order indices calculated on the table are preventing file compaction

C Bloom filler indices calculated on the table are preventing file compaction

C.

Databricks has autotuned to a smaller target file size based on the overall size of data in the table

D.

Databricks has autotuned to a smaller target file size based on the amount of data in each partition

To reduce storage and compute costs, the data engineering team has been tasked with curating a series of aggregate tables leveraged by business intelligence dashboards, customer-facing applications, production machine learning models, and ad hoc analytical queries.

The data engineering team has been made aware of new requirements from a customer-facing application, which is the only downstream workload they manage entirely. As a result, an aggregate tableused by numerous teams across the organization will need to have a number of fields renamed, and additional fields will also be added.

Which of the solutions addresses the situation while minimally interrupting other teams in the organization without increasing the number of tables that need to be managed?

A.

Send all users notice that the schema for the table will be changing; include in the communication the logic necessary to revert the new table schema to match historic queries.

B.

Configure a new table with all the requisite fields and new names and use this as the source for the customer-facing application; create a view that maintains the original data schema and table name by aliasing select fields from the new table.

C.

Create a new table with the required schema and new fields and use Delta Lake's deep clone functionality to sync up changes committed to one table to the corresponding table.

D.

Replace the current table definition with a logical view defined with the query logic currently writing the aggregate table; create a new table to power the customer-facing application.

E.

Add a table comment warning all users that the table schema and field names will be changing on a given date; overwrite the table in place to the specifications of the customer-facing application.

A table in the Lakehouse namedcustomer_churn_paramsis used in churn prediction by the machine learning team. The table contains information about customers derived from a number of upstream sources. Currently, the data engineering team populates this table nightly by overwriting the table with the current valid values derived from upstream data sources.

The churn prediction model used by the ML team is fairly stable in production. The team is only interested in making predictions on records that have changed in the past 24 hours.

Which approach would simplify the identification of these changed records?

A.

Apply the churn model to all rows in the customer_churn_params table, but implement logic to perform an upsert into the predictions table that ignores rows where predictions have not changed.

B.

Convert the batch job to a Structured Streaming job using the complete output mode; configure a Structured Streaming job to read from the customer_churn_params table and incrementally predict against the churn model.

C.

Calculate the difference between the previous model predictions and the current customer_churn_params on a key identifying unique customers before making new predictions; only make predictions on those customers not in the previous predictions.

D.

Modify the overwrite logic to include a field populated by calling spark.sql.functions.current_timestamp() as data are being written; use this field to identify records written on a particular date.

E.

Replace the current overwrite logic with a merge statement to modify only those records that have changed; write logic to make predictions on the changed records identified by the change data feed.

When evaluating the Ganglia Metrics for a given cluster with 3 executor nodes, which indicator would signal proper utilization of the VM's resources?

A.

The five Minute Load Average remains consistent/flat

B.

Bytes Received never exceeds 80 million bytes per second

C.

Network I/O never spikes

D.

Total Disk Space remains constant

E.

CPU Utilization is around 75%

A user new to Databricks is trying to troubleshoot long execution times for some pipeline logic they are working on. Presently, the user is executing code cell-by-cell, usingdisplay()calls to confirm code is producing the logically correct results as new transformations are added to an operation. To get a measure of average time to execute, the user is running each cell multiple times interactively.

Which of the following adjustments will get a more accurate measure of how code is likely to perform in production?

A.

Scala is the only language that can be accurately tested using interactive notebooks; because the best performance is achieved by using Scala code compiled to JARs. all PySpark and Spark SQL logic should be refactored.

B.

The only way to meaningfully troubleshoot code execution times in development notebooks Is to use production-sized data and production-sized clusters with Run All execution.

C.

Production code development should only be done using an IDE; executing code against a local build of open source Spark and Delta Lake will provide the most accurate benchmarks for how code will perform in production.

D.

Calling display () forces a job to trigger, while many transformations will only add to the logical query plan; because of caching, repeated execution of the same logic does not provide meaningful results.

E.

The Jobs Ul should be leveraged to occasionally run the notebook as a job and track execution time during incremental code development because Photon can only be enabled on clusters launched for scheduled jobs.

A data architect has heard about lake's built-in versioning and time travel capabilities. For auditing purposes they have a requirement to maintain a full of all valid street addresses as they appear in the customers table.

The architect is interested in implementing a Type 1 table, overwriting existing records with new values and relying on Delta Lake time travel to support long-term auditing. A data engineer on the project feels that a Type 2 table will provide better performance and scalability.

Which piece of information is critical to this decision?

A.

Delta Lake time travel does not scale well in cost or latency to provide a long-term versioning solution.

B.

Delta Lake time travel cannot be used to query previous versions of these tables because Type 1 changes modify data files in place.

C.

Shallow clones can be combined with Type 1 tables to accelerate historic queries for long-term versioning.

D.

Data corruption can occur if a query fails in a partially completed state because Type 2 tables requires

Setting multiple fields in a single update.

What is a method of installing a Python package scoped at the notebook level to all nodes in the currently active cluster?

A.

Use &Pip install in a notebook cell

B.

Run source env/bin/activate in a notebook setup script

C.

Install libraries from PyPi using the cluster UI

D.

Use &sh install in a notebook cell

A data engineer needs to capture pipeline settings from an existing in the workspace, and use them to create and version a JSON file to create a new pipeline.

Which command should the data engineer enter in a web terminal configured with the Databricks CLI?

A.

Use the get command to capture the settings for the existing pipeline; remove the pipeline_id and rename the pipeline; use this in a create command

B.

Stop the existing pipeline; use the returned settings in a reset command

C.

Use the alone command to create a copy of an existing pipeline; use the get JSON command to get the pipeline definition; save this to git

D.

Use list pipelines to get the specs for all pipelines; get the pipeline spec from the return results parse and use this to create a pipeline