Amazon Web Services MLA-C01 - AWS Certified Machine Learning Engineer - Associate
A company uses a training job on Amazon SageMaker Al to train a neural network. The job first trains a model and then evaluates the model's performance ag
test dataset. The company uses the results from the evaluation phase to decide if the trained model will go to production.
The training phase takes too long. The company needs solutions that can shorten training time without decreasing the model's final performance.
Select the correct solutions from the following list to meet the requirements for each description. Select each solution one time or not at all. (Select THREE.)
. Change the epoch count.
. Choose an Amazon EC2 Spot Fleet.
· Change the batch size.
. Use early stopping on the training job.
· Use the SageMaker Al distributed data parallelism (SMDDP) library.
. Stop the training job.
A company is using an AWS Lambda function to monitor the metrics from an ML model. An ML engineer needs to implement a solution to send an email message when the metrics breach a threshold.
Which solution will meet this requirement?
An ML engineer is using an Amazon SageMaker AI shadow test to evaluate a new model that is hosted on a SageMaker AI endpoint. The shadow test requires significant GPU resources for high performance. The production variant currently runs on a less powerful instance type.
The ML engineer needs to configure the shadow test to use a higher performance instance type for a shadow variant. The solution must not affect the instance type of the production variant.
Which solution will meet these requirements?
A company has trained and deployed an ML model by using Amazon SageMaker. The company needs to implement a solution to record and monitor all the API call events for the SageMaker endpoint. The solution also must provide a notification when the number of API call events breaches a threshold.
Use SageMaker Debugger to track the inferences and to report metrics. Create a custom rule to provide a notification when the threshold is breached.
Which solution will meet these requirements?
An ML engineer wants to re-train an XGBoost model at the end of each month. A data team prepares the training data. The training dataset is a few hundred megabytes in size. When the data is ready, the data team stores the data as a new file in an Amazon S3 bucket.
The ML engineer needs a solution to automate this pipeline. The solution must register the new model version in Amazon SageMaker Model Registry within 24 hours.
Which solution will meet these requirements?
An ML engineer develops a neural network model to predict whether customers will continue to subscribe to a service. The model performs well on training data. However, the accuracy of the model decreases significantly on evaluation data.
The ML engineer must resolve the model performance issue.
Which solution will meet this requirement?
A digital media entertainment company needs real-time video content moderation to ensure compliance during live streaming events.
Which solution will meet these requirements with the LEAST operational overhead?
A company is building a near real-time data analytics application to detect anomalies and failures for industrial equipment. The company has thousands of IoT sensors that send data every 60 seconds. When new versions of the application are released, the company wants to ensure that application code bugs do not prevent the application from running.
Which solution will meet these requirements?
A company uses Amazon SageMaker AI to create ML models. The data scientists need fine-grained control of ML workflows, DAG visualization, experiment history, and model governance for auditing and compliance.
Which solution will meet these requirements?
An ML engineer is tuning an image classification model that performs poorly on one of two classes. The poorly performing class represents an extremely small fraction of the training dataset.
Which solution will improve the model’s performance?

