Winter Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ecus65

Amazon Web Services MLA-C01 - AWS Certified Machine Learning Engineer - Associate

Page: 6 / 7
Total 207 questions

A company uses a training job on Amazon SageMaker Al to train a neural network. The job first trains a model and then evaluates the model's performance ag

test dataset. The company uses the results from the evaluation phase to decide if the trained model will go to production.

The training phase takes too long. The company needs solutions that can shorten training time without decreasing the model's final performance.

Select the correct solutions from the following list to meet the requirements for each description. Select each solution one time or not at all. (Select THREE.)

. Change the epoch count.

. Choose an Amazon EC2 Spot Fleet.

· Change the batch size.

. Use early stopping on the training job.

· Use the SageMaker Al distributed data parallelism (SMDDP) library.

. Stop the training job.

A company is using an AWS Lambda function to monitor the metrics from an ML model. An ML engineer needs to implement a solution to send an email message when the metrics breach a threshold.

Which solution will meet this requirement?

A.

Log the metrics from the Lambda function to AWS CloudTrail. Configure a CloudTrail trail to send the email message.

B.

Log the metrics from the Lambda function to Amazon CloudFront. Configure an Amazon CloudWatch alarm to send the email message.

C.

Log the metrics from the Lambda function to Amazon CloudWatch. Configure a CloudWatch alarm to send the email message.

D.

Log the metrics from the Lambda function to Amazon CloudWatch. Configure an Amazon CloudFront rule to send the email message.

An ML engineer is using an Amazon SageMaker AI shadow test to evaluate a new model that is hosted on a SageMaker AI endpoint. The shadow test requires significant GPU resources for high performance. The production variant currently runs on a less powerful instance type.

The ML engineer needs to configure the shadow test to use a higher performance instance type for a shadow variant. The solution must not affect the instance type of the production variant.

Which solution will meet these requirements?

A.

Modify the existing ProductionVariant configuration in the endpoint to include a ShadowProductionVariants list. Specify the larger instance type for the shadow variant.

B.

Create a new endpoint configuration with two ProductionVariant definitions. Configure one definition for the existing production variant and one definition for the shadow variant with the larger instance type. Use the UpdateEndpoint action to apply the new configuration.

C.

Create a separate SageMaker AI endpoint for the shadow variant that uses the larger instance type. Create an AWS Lambda function that routes a portion of the traffic to the shadow endpoint. Assign the Lambda function to the original endpoint.

D.

Use the CreateEndpointConfig action to define a new configuration. Specify the existing production variant in the configuration and add a separate ShadowProductionVariants list. Specify the larger instance type for the shadow variant. Use the CreateEndpoint action and pass the new configuration to the endpoint.

A company has trained and deployed an ML model by using Amazon SageMaker. The company needs to implement a solution to record and monitor all the API call events for the SageMaker endpoint. The solution also must provide a notification when the number of API call events breaches a threshold.

Use SageMaker Debugger to track the inferences and to report metrics. Create a custom rule to provide a notification when the threshold is breached.

Which solution will meet these requirements?

A.

Use SageMaker Debugger to track the inferences and to report metrics. Create a custom rule to provide a notification when the threshold is breached.

B.

Use SageMaker Debugger to track the inferences and to report metrics. Use the tensor_variance built-in rule to provide a notification when the threshold is breached.

C.

Log all the endpoint invocation API events by using AWS CloudTrail. Use an Amazon CloudWatch dashboard for monitoring. Set up a CloudWatch alarm to provide notification when the threshold is breached.

D.

Add the Invocations metric to an Amazon CloudWatch dashboard for monitoring. Set up a CloudWatch alarm to provide notification when the threshold is breached.

An ML engineer wants to re-train an XGBoost model at the end of each month. A data team prepares the training data. The training dataset is a few hundred megabytes in size. When the data is ready, the data team stores the data as a new file in an Amazon S3 bucket.

The ML engineer needs a solution to automate this pipeline. The solution must register the new model version in Amazon SageMaker Model Registry within 24 hours.

Which solution will meet these requirements?

A.

Create an AWS Lambda function that runs one time each week to poll the S3 bucket for new files. Invoke the Lambda function asynchronously. Configure the Lambda function to start the pipeline if the function detects new data.

B.

Create an Amazon CloudWatch rule that runs on a schedule to start the pipeline every 30 days.

C.

Create an S3 Lifecycle rule to start the pipeline every time a new object is uploaded to the S3 bucket.

D.

Create an Amazon EventBridge rule to start an AWS Step Functions TrainingStep every time a new object is uploaded to the S3 bucket.

An ML engineer develops a neural network model to predict whether customers will continue to subscribe to a service. The model performs well on training data. However, the accuracy of the model decreases significantly on evaluation data.

The ML engineer must resolve the model performance issue.

Which solution will meet this requirement?

A.

Penalize large weights by using L1 or L2 regularization.

B.

Remove dropout layers from the neural network.

C.

Train the model for longer by increasing the number of epochs.

D.

Capture complex patterns by increasing the number of layers.

A digital media entertainment company needs real-time video content moderation to ensure compliance during live streaming events.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon Rekognition and AWS Lambda to extract and analyze the metadata from the videos' image frames.

B.

Use Amazon Rekognition and a large language model (LLM) hosted on Amazon Bedrock to extract and analyze the metadata from the videos’ image frames.

C.

Use Amazon SageMaker AI to extract and analyze the metadata from the videos' image frames.

D.

Use Amazon Transcribe and Amazon Comprehend to extract and analyze the metadata from the videos' image frames.

A company is building a near real-time data analytics application to detect anomalies and failures for industrial equipment. The company has thousands of IoT sensors that send data every 60 seconds. When new versions of the application are released, the company wants to ensure that application code bugs do not prevent the application from running.

Which solution will meet these requirements?

A.

Use Amazon Managed Service for Apache Flink with the system rollback capability enabled to build the data analytics application.

B.

Use Amazon Managed Service for Apache Flink with manual rollback when an error occurs to build the data analytics application.

C.

Use Amazon Data Firehose to deliver real-time streaming data programmatically for the data analytics application. Pause the stream when a new version of the application is released and resume the stream after the application is deployed.

D.

Use Amazon Data Firehose to deliver data to Amazon EC2 instances across two Availability Zones for the data analytics application.

A company uses Amazon SageMaker AI to create ML models. The data scientists need fine-grained control of ML workflows, DAG visualization, experiment history, and model governance for auditing and compliance.

Which solution will meet these requirements?

A.

Use AWS CodePipeline with SageMaker Studio and SageMaker ML Lineage Tracking.

B.

Use AWS CodePipeline with SageMaker Experiments.

C.

Use SageMaker Pipelines with SageMaker Studio and SageMaker ML Lineage Tracking.

D.

Use SageMaker Pipelines with SageMaker Experiments.

An ML engineer is tuning an image classification model that performs poorly on one of two classes. The poorly performing class represents an extremely small fraction of the training dataset.

Which solution will improve the model’s performance?

A.

Optimize for accuracy. Use image augmentation on the less common images.

B.

Optimize for F1 score. Use image augmentation on the less common images.

C.

Optimize for accuracy. Use SMOTE to generate synthetic images.

D.

Optimize for F1 score. Use SMOTE to generate synthetic images.